Different Vays to Quench: Breaking Degeneracies

Philip Hopkins 08/21/07

Lars Hernquist, TJ Cox, Dusan Keres, Volker Springel,

Rachel Somerville (MPIA), Gordon Richards (JHU), Kevin Bundy (Caltech), Alison Coil (Arizona), Adam Lidz (CfA), Adam Myers (Illinois), Yuexing Li (CfA), Paul Martini (OSU), Ramesh Narayan (CfA), Elisabeth Krause (Bonn)

Motivation "QUENCHING" HALTS GROWTH & FORMS RED SEQUENCE

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

(b) "Small Group"

- halo accretes similar-mass companion(s)
- can occur over a wide mass range
- Mhalo still similar to before: dynamical friction merges the subhalos efficiently

- halo & disk grow, most stars formed
- secular growth builds bars & pseudobulges
- "Seyfert" fueling (AGN with ME>-23)
- cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center:
- starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback, but, total stellar mass formed is small

(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback
- remaining dust/gas expelled - get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios
 - merger signatures still visible

(f) Quasar

- dust removed: now a "traditional" QSO - host morphology difficult to observe: tidal features fade rapidly
- characteristically blue/young spheroid

(g) Decay/K+A

NGC 7252

- QSO luminosity fades rapidly - tidal features visible only with very deep observations - remnant reddens rapidly (E+A/K+A) - "hot halo" from feedback
 - sets up quasi-static cooling

- halo grows to "large group" scales:
- mergers become inefficient
- growth by "dry" mergers

Motivation MERGERS AND THE BLUE-RED TRANSITION

Joanna Woo: Disks aren't "turned off" (red = bulge)?

Drory & Fisher: Passive/Red = classical bulge

Motivation CIRCUMSTANTIAL EVIDENCE

The Model PREDICTIONS

-2

-3

-5

-6

-7

-8

log(\phi) [Mpc³ log(M_{gal})⁻¹]

12

Group Capture (Collisional)

log(M_{gal} / M_☉)

10

Angular Momentum (Orbital) Capture

11

14

red fractions:

9

The Model PREDICTIONS

mass function redshift evolution:

mass density:

9.5

10.0

10.5

log(M_{gal} / M_®)

11.0

11.5

12.0

Tuesday, December 25, 12

Lowest-Order Predictions are Fundamentally Non-Unique: HOW DO WE BREAK THE DEGENERACIES?

Are there unique, robust predictions of the different classes of quenching mechanisms?

Lowest-Order Predictions are Fundamentally Non-Unique: HOW DO WE BREAK THE DEGENERACIES?

Identify broad classes of quenching models:

Somerville et al. (new) Hopkins et al. (too many)

Bower et al. Cattaneo et al. (standard) Kang et al. Monaco et al. (no QSO)

Bower et al. (sometimes)

Motivation WHAT DO WE KNOW?

	Mergers	Hot Halos	Secular
morphology:	classical bulges/ spheroids	little effect	"pseudobulges"
BH/AGN:	*quasar & remnant massive BH	*little BH growth *fuel for low Mdot modes?	*Seyferts? *small (<10^7 M_sun) BHs
feedback:	*kinematic *quasar *starburst	*accretion shocks *gravitational	*Seyfert? *stellar winds
timescales:	short (<gyr)< td=""><td>~Hubble time</td><td>~Gyr?</td></gyr)<>	~Hubble time	~Gyr?

- f_red vs. M_halo and M_gal:
 - smooth dependence on M_halo
 - > no characteristic scale
 - high even in low M_halo (for massive galaxies)

"Halo Quenching" Model:

- step function in M_halo: strong characteristic scale
- > no residual M_gal dependence
- no f_red in low M_halo

- Merger Model:
 - appropriate mixed dependence on M_halo and M_gal

no sharp scale in M_halo

- same trends
- avoid dusty/metal-rich disk contamination

Comparing Quenching Models HIGH-REDSHIFT PASSIVE GALAXIES

High-z passive (low SSFR) galaxies:

» z~2-4

- Very compact, n~4: Spheroids/Merger remnants
- High (low-lum) AGN fraction

Kriek et al., Labbe et al., Zirm et al.

Comparing Quenching Models HIGH-REDSHIFT PASSIVE GALAXIES

Comparing Quenching Models DICHOTOMY IN ELLIPTICAL KINEMATICS

1.0

0.8

0.6

12.0

12.5

11.5

Comparing Quenching Models DICHOTOMY IN ELLIPTICAL KINEMATICS

1.0

0.8

0.6

Tuesday, December 25, 12

Comparing Quenching Models SUMMARY

- Strong arguments for association between mergers, quasars, & bluered transition:
 - clustering, number densities, merger fractions, morphologies, host colors/SFHs, LF evolution, kinematics, etc.

But, how is quenching over a Hubble time accomplished by a single, potentially high redshift gas-rich major merger?

How Could Mergers Be Associated with "Maintenance"?

- (1) "Complete" quenching from a single event
 - energetics might be ok...
 - high redshifts: densities larger, cooling in filaments
 - can it really work for a Hubble time?

(2) Buying time

- expel cold gas at the end of the merger
- heat remaining gas to much larger t_cool
- only need ~couple Gyr to "naturally" develop a hot halo
- still needs "radio mode" when that hot halo is formed

- (3) Hot halos from merger feedback
 - quasar/starburst heats gas to t_cool >> t_dyn
 - merger simulations end up with quasi-static, pressure supported gas equilibrium inside R_vir
 - new gas will shock: don't need to "pre-heat" everything

Summary

- Models where merger history supplements quenching make robust, qualitatively distinct predictions
 - Detailed observations can break degeneracies
 - Compared to models where a simple halo mass threshold or secular mechanisms set quenching, only the merger model appears to match these observations:
 - Bivariate red fraction (vs. M_halo & M_gal)
 - High-z passive populations
 - Elliptical dichotomy
 - Evolution of color-morphology-density relations
- Mergers work *with* hot halos
 - Buy time for hot halos to develop
 - Directly shock low-mass systems to "hot halo" mode
- Caveats:
 - Satellites
 - Secular AGN fueling & pseudobulge formation are probably important: M_bulge < 10^10 M_sun, M_bh <~ 10^7 M_sun</p>

Structure in Elliptical Light Profiles RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Tuesday, December 25, 12

Structure in Elliptical Light Profiles RECOVERING THE ROLE OF GAS

0.8

Structure in Elliptical Light Profiles RECOVERING THE ROLE OF GAS

Structure in Elliptical Light Profiles RECOVERING THE ROLE OF GAS

Motivation CIRCUMSTANTIAL EVIDENCE

Bell+06; Lotz+06; Lin+04; Patton+02; Conselice+03

Hopkins, Bundy+06

The Role of "Quasar" Feedback CORRELATION VS. CAUSALITY?

Comparing Quenching Models COLOR-MORPHOLOGY-DENSITY RELATION EVOLUTION

