The Origins & Evolution of the Quasar Luminosity Function

Philip Hopkins 07/14/06

Lars Hernquist, Volker Springel, Gordon Richards, T. J. Cox, Brant Robertson, Tiziana Di Matteo, Yuexing Li, Sukanya Chakrabarti

A subset of recent quasar samples...

Reference	Survey/Field ^a	Rest Wavelength/Band	z Range ^b	Luminosity Range ^b	χ^2/ν^{ϵ}	NAGN	Plotting Symbol
Optical:							
Cristiani et al. (2004)	GOODS	1450 Å	$\sim 4 - 5.2$	$-21 > M_{1450} > -23.5$	0.58/1	1 - 4	crosses
Croom et al. (2004)	2QZ/6QZ	В	0.4 - 2.1	$-20.5 > M_g > -28.5$	23.1/10	20,905	asterisks
Fan et al. (2001a)	SDSS (Equatorial Stripe)	1450 Å	3.6 - 5.0	$-25.5 > M_{1450} > -27.5$	6.21/9	39	pentagons
Fan et al. (2001b, 2003, 2004)	SDSS (Main & Southern Survey)	1450 Å	$\sim 5.7 - 6.4$	$-26.5 > M_{1450} > -28$	2.12/3	9	
Hunt et al. (2004)	LBG survey	1450 Å	$\sim 2-4$	$-21 > M_{1450} > -27$	4.74/6	11	diamonds
Kennefick et al. (1995)	POSS	В	4.0 - 4.5	$-26.5 > M_B > -28.5$	14.8/2	10	triangles
Richards et al. (2005)	2dF-SDSS	g	0.3 - 2.2	$-21 > M_{\pi} > -27$	137/99	5,645	circles
Richards et al. (2006b)	SDSS (DR3)	$i(z = 2) \sim 2500 \text{ Å}$	0.3 - 5.0	$-22.5 > M_i > -29$	247/101	15,343	squares
Schmidt et al. (1995)	PTGS	В	$\sim 3.5 - 4.5$	$-25.5 > M_B > -27.5$	8.04/4	8	inverted triangles
Siana et al. (2006)	SWIRE (ELIAS-N1/N2)	1450 Å	$\sim 2.8 - 3.4$	$-23.5 > M_{1450} > -26.5$	4.74/6	~ 100	crosses
Wolf et al. (2003)	COMBO-17	1450 Å	1.2 - 4.8	$-23.5 > M_{1450} > -28.5$	54.2/27	192	stars
Soft X-ray:							
Hasinger et al. (2005)	ROSAT (RASS+RDS) + CDF-N/S	$0.5 - 2 \mathrm{keV}$	0.015 - 4.8	$10^{42} < L_{0.5-2} < 10^{48} \mathrm{erg} \mathrm{s}^{-1}$	169/51	2.566	circles
Miyaji et al. (2000, 2001)	ROSAT (RASS+RDS)	0.5 - 2 keV	0.015 - 4.8	$10^{41} < L_{0.5-2} < 10^{47} {\rm erg s^{-1}}$	112/41	691	stars
Silverman et al. (2005b)	CHAMP+ROSAT (RASS)	0.5 - 2 keV	0.1 - 5	$10^{44.5} < L_{0.5-2} < 10^{46} {\rm erg s^{-1}}$	24.1/9	217	squares
Hard X-ray:							
Bareer et al. (2003a.b)	CDF-N	2 - 8 keV	$\sim 5 - 6.5$	$10^{43} < L_{2-8} < 10^{45} \mathrm{erg} \mathrm{s}^{-1}$	1.02/1	1	diamonds
Barger et al. (2005)	CDF-N/S + CLASXS + ASCA	2 - 8 keV	$\sim 0.1 - 1.2$	$10^{42} < L_{2-8} < 10^{46} {\rm erg s^{-1}}$	41.0/30	601	squares
burger et un (2005)	CDE-N/S + CLASXS	2 - 8 keV	~15-50	$10^{42} < L_2 \ll 10^{46} {\rm erg s^{-1}}$	15.5/9	~100	odomen
Barger & Cowie (2005)	CDF-N/GOODS-N	2 - 8 keV	~2-3	$10^{43} < L_2 \le 10^{44.5} \text{erg s}^{-1}$	1.73/1	136	
La França et al. (2005)	HELLASYXMM	2 = 10 keV	0.0 - 4.0	$10^{42} < I_{0}$ is $< 10^{46.5} {\rm erg s}^{-1}$	14 4/18	508	stors
Nandra et al. (2005)	GWS + HDE-N	2 - 10 keV	27-32	$10^{43} < I_{2}$ is $< 10^{44.5} \text{erg s}^{-1}$	0.77/1	15	crosses
Sazonov & Revnivtsev (2004)	RXTE	3 - 20 keV	0.0 - 0.1	$10^{41} \le L_{2}$ as $\le 10^{46} erg s^{-1}$	9 75/10	77	inverted triangles
Silverman et al. (2005a c)	CHAMP	0.3 - 8.0 keV	0.2 - 4.0	$10^{42} < I_{0.3} \le 10^{45.5} {\rm erg s^{-1}}$	26 3/15	368	triangles
Ueda et al. (2003)	HEAO1 + AMSS-n/s + ALSS + ASCA + CDF-N	2-10 keV	0.015 - 3.0	$10^{41.5} < L_{2-10} < 10^{46.5} \mathrm{erg s^{-1}}$	26.5/35	247	circles
Mid-IR:							
Brown et al. (2006)	Spirrer Boötes (NDWES)	8.um	~1-5	$10^{45} < I_{\pi} < 10^{47} erg s^{-1}$	3 77/10	183	circles
Matute et al. (2006)	RMS + ELIAS + HDF-N/S	$15 \mu m$	$\sim 0.1 - 1.2$	$10^{42} < L_{15\mu m} < 10^{47}{ m ergs^{-1}}$	23.4/18	148	squares
Emission Lines:	PARAMET ACCUMENTS AND ACCUMENTS AND	NOGL-WRITE-		Preserve entrand of Participan Colored Dis	NESTI SU SEÑA	5785355	
Hao et al. (2005)	SDSS (main galaxy sample)	Ha	0 - 0.33	$10^5 \le Lu_{cr} \le 10^9 L_{\odot}$	29.5/21	~3000	pentagons
	and the function for the function of the funct	IOIII		$10^5 \le L_{OR} \le 10^8 L_{\odot}$			Laurence
		(OIII)		1901 - 1901			

TABLE 1 MEASUREMENTS OF THE QLF

How to Address This? METHODOLOGY

Given bolometric Phi(L), convolve over SEDs:

Methodology GIVEN A BOLOMETRIC PHI(L), CONVOLVE OVER KNOWN SEDs

Methodology GIVEN A BOLOMETRIC PHI(L), CONVOLVE OVER KNOWN SEDs

- Want the "intrinsic" SED (e.g. Marconi+ '04)
 - Type 1, un-obscured/un-reddened, subtract host light

Methodology MORE THAN ONE SED

- Dependence on L
- Distribution of SED shapes
 - Remove obscuration component

Tuesday, December 25, 12

13

14

log(v) (Hz)

log(vL_v) (relative)

0

-1

Methodology **OBSCURATION**

1.25

1.00

Ueda+ 03

Tuesday, December 25, 12

Obtain Phi(L) specific to observed band, L_obs, and redshift:

Luminosity-Dependence TEST DIFFERENT BOLOMETRIC CORRECTIONS, ETC.

LF vs. Redshift UV THROUGH IR

LF vs. Redshift UV THROUGH IR

What Do We Learn? "ZERO-TH ORDER"

What Do We Learn? "ZERO-TH ORDER"

What Do We Learn? "FIRST ORDER"

What Do We Learn? **"FIRST ORDER"**

- Little ambiguity in L-M mapping
 - **Model-independent**

Tuesday, December 25, 12

Probability (Arbitrary Scale)

0.001

What Do We Learn? "FIRST ORDER"

- Little ambiguity in interpretation at z < 2</p>
 - High-z can't get bigger
 - Observed mdot
 - Observed clustering
 - Local BHMF

What Do We Learn? "FIRST ORDER"

- High-z :: low-M_bh, or still building up?
 - M_BH vs. M_BH_final

What Do We Learn? "FIRST ORDER"

- High-z :: low-M_bh, or still building up?
 - Host masses?
 - Clustering

Recall...

Recall...

Luminosity-Dependent Density Evolution "SECOND ORDER"

- Faint End (X-ray "LDDE")
 - Incompleteness?

 Want faint-end slope over large-z from single surveys

Tuesday, December 25, 12

- Faint End (X-ray "LDDE")
 - Incompleteness?
 - Lots of (very) low-M active BHs?
 - No faint-end Lqso-Lhost correlation (Bahcall+; Hao+; Vanden Berk+)

z < 0.3

Probability (Arbitrary Scale

Heckman+04

Tuesday, December 25, 12

- Faint End (X-ray "LDDE")
 - Incompleteness?
 - Lots of (very) low-M active BHs?
 - Change in effective duty cycle/lifetime for more massive BHs at low mdot

Luminosity-Dependent Quasar Lifetimes

- Bright End
 - Binning?
 - Probably important at z<1

2.5

2.0

Bright End

- Binning?
- Lensing?
- Effective bias? (distribution of bolometric corrections)
 - Unlikely in optical
 - Favored in *all bands*

Large, optical surveys still the best bet: hope for IR?

Tuesday, December 25, 12

- **Bright End** >
 - (Systematics)

2.5

2.0

Bright End

- (Systematics)
- Reflects shape of halo MF/buildup?
- Feedback again?

2.5

2.0

1.5

2

z

з

Croton+06

-20

1

-24

-22

Bright-End Slope Y2

What Do We Not Know How to Interpret?

- Phi_star: what does it mean?
 - Number of active systems?
 - Duty cycles / lifetimes?

Summary

The combined set of quasar observations has enormous constraining power that should be exploited

• -11 < phi < -2; 8 < L < 16; z = 0.0 - 6.4

- Need to be careful about combining observations
- Systematics now the dominant uncertainty at z<4
- Constrains AGN physics:
 - SEDs & NH depend on L, not z
 - Break, luminosity density, shape change well-measured

Encodes information about population buildup & feedback

- "Cosmic Downsizing" as manifest in QSOs
- Complex shape evolution
- Quasar lifetime not one number: Luminosity-dependent lifetimes

Host Light

$$\phi(L) \equiv \frac{d\Phi}{d\log L}(L) = \int \frac{dt(L, L_{peak})}{d\log(L)} n(L_{peak}) d\log(L_{peak}).$$
Simple quasar
lifetimes
$$\begin{array}{c} 2 \\ 0 \\ -2 \\ -4 \\ -6 \\ 8 \end{array} \begin{array}{c} 10 \\ 10 \\ 12 \\ 14 \end{array}$$

Log(L/L_{sun})

$$\phi(L) \equiv \frac{d\Phi}{d\log L}(L) = \int \frac{dt(L, L_{peak})}{d\log(L)} i(L_{peak}) d\log(L_{peak}).$$

Simple quasar
lifetimes
$$\begin{array}{c} 2 \\ 0 \\ -2 \\ -4 \\ -6 \\ 8 \\ 10 \\ Log(L/L_{sun}) \end{array}$$

$$\phi(L) \equiv \frac{\mathrm{d}\Phi}{\mathrm{d}\log L}(L) = \int \frac{\mathrm{d}t(L, L_{\mathrm{peak}})}{\mathrm{d}\log(L)} \, \dot{n}(L_{\mathrm{peak}}) \, \mathrm{d}\log(L_{\mathrm{peak}}).$$

$$\phi(L) \equiv \frac{\mathrm{d}\Phi}{\mathrm{d}\log L}(L) = \int \frac{\mathrm{d}t(L, L_{\mathrm{peak}})}{\mathrm{d}\log(L)} \, \dot{n}(L_{\mathrm{peak}}) \, \mathrm{d}\log(L_{\mathrm{peak}}).$$

$$\phi(L) \equiv \frac{\mathrm{d}\Phi}{\mathrm{d}\log L}(L) = \int \frac{\mathrm{d}t(L, L_{\mathrm{peak}})}{\mathrm{d}\log(L)} \, \dot{n}(L_{\mathrm{peak}}) \, \mathrm{d}\log(L_{\mathrm{peak}}).$$

- Feedback-regulated lifetime drives a given QSO to lower L after blowout, and spends more time at low-L
- Much stronger turnover in formation/merger rate
- Faint-end QLF dominated by decaying sources with much larger peak luminosity/hosts

Feedback-driven "Blowout" Gives M-sigma Relation PREVENTS RUNAWAY BLACK HOLE GROWTH

Quasar Clustering is a Strong Test of this Model MOST FAINT QSOS ARE DECAYING BRIGHT QSOS - SHOULD BE IN SIMILAR HOSTS

Generalizing the Model NOT ALL AGN ARE MERGER-DRIVEN

- Almost any (ex. radio) AGN feedback will share key properties:
 - Point-like
 - Short input (~ t_Salpeter)
 - E~E_binding (defines when the feedback is important)
- Suggests analytical solutions for decay of accretion rates in feedback-driven winds or blastwaves
 - Agrees well with simulations!
- Generalize to "Seyferts"
 - Disk-dominated galaxy, central molecular clouds
 - Calculate accretion rate(time) when a cloud "collides" with the BH

The Seyfert Luminosity Function A STOCHASTIC BUT FEEDBACK-REGULATED MODEL

The Seyfert Luminosity Function PREDICT THE EDDINGTON RATIO DISTRIBUTIONS FROM THIS FUELING MODE, AS BEFORE

Tuesday, December 25, 12

The Seyfert Luminosity Function CORRECTIONS TO THE M_BH-SIGMA RELATION

The Seyfert Luminosity Function CONTRIBUTION AS A FUNCTION OF REDSHIFT

