The Impact of "Quasar" Feedback on the Formation & Evolution of Red Galaxies

Philip Hopkins 07/17/06

Lars Hernquist, Volker Springel, Gordon Richards, T. J. Cox, Brant Robertson, Tiziana Di Matteo, Yuexing Li, Sukanya Chakrabarti

The Semi-Analytic Approach

The Semi-Analytic Approach

Real Systems Are Messy! HUGE RANGE OF COMPLEX & UNCERTAIN PHYSICS

- Need to treat:
 - Orbits+torquing (3-D)
 - Star formation
 - Cooling
 - SNe Feedback
 - BH Feedback
 - Metal Enrichment
 - Shocks
 - Huge range of initial conditions

How to Model These Processes? (HOW TO GET THE BEST BANG FOR YOUR SUPERCOMPUTING BUCK)

- Ideally, would use cosmological simulations:
 - Millenium run resolution ~ 5 h^-1 kpc
 - Adaptive mesh "zoom-in" runs similarly too expensive

What if the cosmological simulation doesn't make disks?

- Constuct initial disks in equilibium
 - DM (+gas) Halo
 - Gas+Stellar Disk (variable f_gas)
 - Bulge (variable size)
 - Seed BH
 - Scalings derived from observations
 - Potential solved exactly, with pressure effects, etc.
 - Put pairs on orbits & let them evolve
 - Best cases:

gas smoothing length ~ 20 pc

- Stable
- Numerical convergence

The Simulations STILL, CAN'T RESOLVE EVERYTHING...

- Individual sites of star formation still << r_smooth</p>
 - sub-resolution model for multi-phase ISM (e.g. McKee & Ostriker 1977)
 - cooling >> "sink" of molecular clouds >> star formation >> SNe feedback pressurizes hot phase & evaporates clouds

The Simulations THE AGN...

- R_sch ~ few AU ~ 10^-6 x our resolution
- R_Bondi ~ 10 pc (typical)
 - Bondi-Hoyle accretion rate (max Eddington)
 - ~0.1 radiative efficiency (high-mdot)
 - ~5% couples to local gas (thermally)

The Simulations

The Simulations WHAT ABOUT THE FEEDBACK PRESCRIPTION?

- Modeling "Quasar" Feedback
- ~5% to match observed M-sigma normalization (Silk & Rees '98)
 - Line opacities + AGN spectrum (Sazonov et al.)
 - Momentum driven winds (Murray et al.)
 - Disk wind simulations (Proga et al.)

Probably not radio jets

The Simulations FINALLY, WHAT TO SIMULATE?

- Span the parameter space, varying:
 - Masses & mass ratios
 - Disk gas fractions
 - Redshift of formation & merger
 - Disk structural parameters
 - Bulge-to-disk ratio, concentration, scale lengths
 - ISM Feedback/Pressurization (isothermal > full multiphase)
 - BH accretion & feedback efficiency
 - Stellar winds : add/remove
 - Mass loading, energy-loading
 - Orbital parameters
 - Disk orientations
 - Angular momentum
 - Pericentric passage

~500+ simulations and counting (Robertson et al. 2005; Cox et al. 2004)

The Simulations FINALLY, WHAT TO SIMULATE?

- Span the parameter space, varying:
 - Masses & mass ratios
 - Disk gas fractions
 - Redshift of formation & merger
 - Disk structural parameters
 - Bulge-to-disk ratio, concentration, scale lengths
 - ISM Feedback/Pressurization (isothermal > full multiphase)
 - BH accretion & feedback efficiency
 - Stellar winds : add/remove
 - Mass loading, energy-loading
 - Orbital parameters
 - Disk orientations
 - Angular momentum
 - Pericentric passage

~500+ simulations and counting (Robertson et al. 2005; Cox et al. 2004)

T = 0 Myr

Gas

Tuesday, December 25, 12

Quasar Growth: GAS IS HEATED AND EXPELLED IN BLOWOUT, REVEALING A BRIEF, BRIGHT QUASAR

Feedback-driven "Blowout" Gives M-sigma Relation PREVENTS RUNAWAY BLACK HOLE GROWTH

Expulsion of Gas Turns off Star Formation ENSURES ELLIPTICALS ARE SUFFICIENTLY "RED & DEAD"

Tuesday, December 25, 12

Every Quasar Has a Host MAPPING BETWEEN MERGER DISTRIBUTIONS

Spheroids + QSOs produced together

- Hosts follow M-sigma (Di Matteo et al.), BH-bulge mass, Fundamental Plane (Robertson et al.), Kinematic/Morphological/Gas Properties (Cox et al.)
- Map each quasar to a spheroid

e.g. red galaxy mass function (dry mergers a small effect)

Every Quasar Has a Host MAPPING BETWEEN MERGER DISTRIBUTIONS

The Color-Magnitude Diagram

Multiple Age Measurements to Use as Checks

Multiple Age Measurements to Use as Checks

Feedback-Driven Winds GENERAL PROPERTIES

- Rapid growth (t_S<t_dyn)</p>
- Point-like injection
- E~E_binding
 - Explosive outflow

Feedback-Driven Winds COMPARISON TO STARBURST-DRIVEN WINDS

Feedback-Driven Winds COMPARISON TO STARBURST-DRIVEN WINDS

Feedback-Driven Winds COMPARISON TO STARBURST-DRIVEN WINDS

Feedback-Driven Winds METAL ENRICHMENT

Feedback-Driven Winds HEATING & ENTROPY

Single, high-impact event can "set up" observed T/S profiles & correlations in ellipticals

Groups, even Clusters as well?

Feedback-Driven Winds HEATING & ENTROPY

Single episode heats enough gas to prevent a doubling of galaxy size:

Solution to cooling flows? Probably not, but supplements "radio mode"

Observational Prospects "QUASAR" WINDS

- High-velocity outflows
 - >~ 1000 km/s at 1-1000 kpc
 - Local metal absorbers (Bowen+ 06)
 - BALs at "large distances" (deKool+ 01)
 - High-v outflow in non-BALs (Pounds 06)
- Clumpy substructure
- Preferentially w. high-Eddington ratio?

Tuesday, December 25, 12

Observational Prospects "QUASAR" WINDS

CO outflows (Narayanan et al. 06)

Observational Prospects INDIRECT EFFECTS

- Blue Red transition :
 - colors/age of SB vs. Mdot
- Metal Enrichment
 - Abundance ratios (where/when are the metals from?)
 - Compare high-z merger profiles to local spheroids

Summary

- A number of lines of evidence argue for some form of "quasar" feedback
 - But need observations to
 - (1) prove its there, and
 - (2) actually begin to constrain its nature
- Much work to be done :
 - Modeling observations : covering factors, columns, velocity distributions, etc.
 - Self-consistently model feedback generation
 - Include radio and "quasar" mode feedback
 - Incorporate into cosmological models
- But there appears to be rapid progress!