What is Galaxy Formation? THE BIG PICTURE

Today

• /

z~1090 (t~400,000 yr)

What is Galaxy Formation? THE BIG PICTURE

Today

Historic remarks

A brief history of the theory of galaxy formation

Milestones

- Formation of cosmic structures gravitational collapse (Gunn & Gott 1972, Press & Schechter 1974, Peebles 1982/89, Davis 1985, Bardeen et al. 1986)
- Galaxy rotation due to tidal torques present during collapse (Hoyle 1949, Peebles 1969, White 1984, Efstathiou & Jones 1979 [N-body simulations])
- Cooling argument for the observed ranges in galaxy masses (Hoyle 1953)
- Unification of Press & Schechter and gas cooling arguments foundation of today's models (White & Rees 1978)

VVaizmanr

 Introduction of feedback in order to supress the number of faint galaxies (White & Rees 1978) ... start (not quite) at the beginning ...

History of the Universe

~10% Errors in description of expansion history

BASIC AND DERIVED COSMOLOGICAL PARAMETERS: RUNNING SPECTRAL INDEX MODEL

Parameters	Mean and 68% Confidence Errors	
Basic		
Amplitude of fluctuations, A	$0.83^{+0.09}_{-0.08}$	
Spectral index at $k = 0.05 \text{ Mpc}^{-1}$, n_s	0.93 ± 0.03	
Derivative of spectral index, $dn_s/d \ln k$	$-0.031^{+0.016}_{-0.018}$	
Hubble constant, h	$0.71^{+0.04}_{-0.03}$	
Baryon density, $\Omega_b h^2$	0.0224 ± 0.0009	
Matter density, $\Omega_m h^2$	$0.135^{+0.008}_{-0.009}$	
Optical depth, τ	0.17 ± 0.06	
Derived		
Matter power spectrum normalization, σ_8	0.84 ± 0.04	
Characteristic amplitude of velocity fluctuations, $\sigma_8 \Omega_m^{0.6}$	$0.38^{+0.04}_{-0.05}$	
Baryon density/critical density, Ω_b	0.044 ± 0.004	
Matter density/critical density, Ω_m	0.27 ± 0.04	
Age of the universe, t_0	$13.7 \pm 0.2 \text{Gyr}$	
Reionization redshift, ^a z_r	17 ± 4	
Decoupling redshift, z_{dec}	1089 ± 1	
Age of the universe at decoupling, t_{dec}	379^{+8}_{-7} kyr	
Thickness of surface of last scatter, Δz_{dec}	195 ± 2	
Thickness of surface of last scatter, Δt_{dec}	118^{+3}_{-2} kyr	
Redshift of matter/radiation equality, zeq	3233^{+194}_{-210}	
Sound horizon at decoupling, r_s	$147 \pm 2 \text{Mpc}$	
Angular size distance to the decoupling surface, d_A	$14.0^{+0.2}_{-0.3}$ Gpc	
Acoustic angular scale, ^b ℓ_A	301 ± 1	
Current density of baryons, <i>n_b</i>	$(2.5 \pm 0.1) \times 10^{-7} \mathrm{cm}^{-3}$	
Baryon/photon ratio, η	$(6.1^{+0.3}_{-0.2}) \times 10^{-10}$	

^a Assumes ionization fraction, $x_e = 1$. ^b $l_A = \pi d_C/r_s$.

2

1

"Everything else":

$$F_{\rm grav} = \frac{G M_1 M_2}{r_{12}^2}$$

z = 20.0

Dense regions "turn around" (detach from Hubble flow) and collapse

Each collapsed region is a "halo"

Collapse by z=0: $ho_i > 1.86
ho_0$

"Virialize" (can't radiate!)

$$-\frac{1}{2} P E_{\rm vir} = E$$

 $\langle \rho \rangle_{\rm vir} \sim 200 \, \rho_0$

 $V_{\mathrm{vir}}^2 \sim \frac{GM_{\mathrm{vir}}}{R_{\mathrm{vir}}}$

Millenium simulation: Flythrough

Analytically approximate "halos":

 \mathbf{t}_1

 \mathbf{t}_2

 \mathbf{t}_3

 t_4

 t_5

Expansion history determines growth of structure

Not much wiggle room here!

http://space.mit.edu/home/tegmark/movies.html

... what about the baryons? ...

Simulate Directly:

Simulate Directly:

OR, Semi-Analytic Model:

Simulate Directly:

OR, Semi-Analytic Model:

KE >> PE, nothing happens $c_s \gtrsim V_{\rm vir}$

$V_{\rm vir} > 10 \,\mathrm{km \, s^{-1}} \to M_{\rm vir} \gtrsim 10^8 \,M_{\rm sun}$

- Inverse Compton (CMB vs hot halo, z>10)
- Bremsstrahlung + Metal-Lines (T>10⁶)
- Atomic/Recombination $(10^4 < T < 10^6)$
- Molecular + Fine Structure (T < 10^4)

- Inverse Compton (CMB vs hot halo, z>10)
- Bremsstrahlung + Metal-Lines (T>10⁶)
- Atomic/Recombination $(10^4 < T < 10^6)$
- Molecular + Fine Structure $(T < 10^4)$

$$t_{\rm cool} = \frac{E}{\dot{E}} = \frac{\left(\frac{3}{2}\frac{\rho_{\rm gas} k T_{\rm vir}}{\mu m_{\rm H}}\right)}{\rho_{\rm gas}^2 \Lambda(T_{\rm vir}, Z_{\rm gas})}$$

$$t_{\rm cool} = \frac{E}{\dot{E}} = \frac{\left(\frac{3}{2}\frac{\rho_{\rm gas} k T_{\rm vir}}{\mu m_{\rm H}}\right)}{\rho_{\rm gas}^2 \Lambda(T_{\rm vir}, Z_{\rm gas})}$$

$$t_{\rm dyn} = \frac{R}{V_{\rm grav}} \approx \frac{1}{\sqrt{G\rho}}$$

$$j = \frac{J}{M} \sim R_{\text{disk}} V_{\text{disk}} \sim \frac{\langle J_{\text{halo}} \rangle}{M_{\text{halo}}} = \lambda R_{\text{vir}} V_{\text{vir}}$$
$$\text{sims} : \lambda \sim 0.05$$

z=99.00

z=3.2 z=5.5 Density (4R_{vir}) Temperature Temp (R_{vir})

"cold"

2 kpc

Agertz et al. (2009)

Keres et al 2005

"hot"

How Gas Gets Into Galaxies

 $M_{\rm gas}$

Mergers: Major (~I/Dz)

violent relaxation destroys disks
phase space conserved: Tully-Fisher > Faber-Jackson
scramble into r^1/4-law, randomize orbits

Mergers: Minor (~10s/Dz)

- "heats" disk (thin to thick)
- excite spirals & bars ("secular" structure)
- shred the small galaxies into the halo

... So, do we understand it? ...

Moster 2009

Moster 2009

The predicted swarm of small satellite galaxies around the Milky Way

This N-body simulation of dark matter only predicts hundred of small satellite galaxies around large galaxies like the Milky Way. The actual number of galaxies is *ten times fewer,* suggesting that *small dark halos have been swept clean of baryons.*

Kravtsov et al. 2004

How most simulations end up:

э.

Galactic winds expel material from the galaxy: feedback from stars and black holes

Stellar Feedback is the Key (we think) SO WHAT'S THE PROBLEM?

 Standard (in Galaxy Formation): Couple SNe (~1e51 erg/SN) as "heating"/thermal energy

FAILS:

$$t_{\rm cool} \sim 4000 \,{\rm yr} \left(\frac{n}{{\rm cm}^{-3}}\right)^{-1}$$

 $t_{\rm dyn} \sim 10^8 \,{\rm yr} \left(\frac{n}{{\rm cm}^{-3}}\right)^{-1/2}$

- "Cheat":
 - Turn off cooling
 - Force wind by hand ('kick' out of galaxy)

The ultimate in zoom-ins: First Star (singular)

High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- Heating:
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- Heating:
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)
- *Explicit* Momentum Flux:
 - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

> SNe

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

Stellar Winds

$$\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$$

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a

Change the Outcome of (Gas-Rich) Mergers

Cosmological Simulations "ZOOM-IN" ON THE FORMATION OF A MASSIVE GALAXY

We have to compromise on resolution and/or physics!

PFH & Keres et al.

Models with "sub-grid" feedback

PFH & Keres et al PFH, Bullock, & Onorbe et al.

- Photo-Heat the IGM (H & He Ionization)
- Eject Metals
- Directly shock
 "nearby" systems

log Z/Z₀

-3

Temperature

log

Cosmological Simulations "ZOOM-IN" ON THE FORMATION OF A MASSIVE GALAXY

Proto-MW: Gas Temperature:

Insert Winds "By Hand" (Sub-Grid)	Following Full Feedback

PFH & Keres et al.

Why Do We Need AGN Feedback?

- Sharp color bimodality
- Removing/heating gas in groups

Why Do We Need AGN Feedback?

- Sharp color bimodality
- Removing/heating gas in groups

Feedback Energy: SILK & REES '98

 $L = \epsilon_r \dot{M}_{\rm BH} c^2 \quad (\epsilon_r \sim 0.1)$ $\to E_{\rm rad} \sim 0.1 \, M_{\rm BH} \, c^2 \sim 10^{61} \, {\rm erg}$ $(M_{\rm BH} \sim 10^8 \, M_{\odot})$

$E_{\rm gal} \sim M_{\rm gal} \,\sigma^2 \sim (10^{11} \,M_{\odot}) \,(200 \,\rm km/s)^2 \sim 10^{59} \,\rm erg$

Molecular Outflows in AGN & ULIRGs OBSERVED WINDS at >1000 km/s

Rupke & Veilleux 2005,2011 Fischer et al. 2010 (Mrk 231) Feruglio et al. 2010 (Mrk 231) Alatalo et al. 2011 (NGC 1266)

Inflow?

Inflow?

Observed Sources of AGN Feedback

- Jets
 - heat IGM/ICM (low-density), but not dense ISM

Observed Sources of AGN Feedback

- Jets
 - heat IGM/ICM (low-density), but not dense ISM
- Radiation Pressure
 - L_{AGN} >> L_{stars}

Observed Sources of AGN Feedback

- Jets
 - heat IGM/ICM (low-density), but not dense ISM
- Radiation Pressure
 - L_{AGN} >> L_{stars}
- Accretion Disk Winds
 - Broad Absorption Line Winds

BAL Winds on ~1pc - 1kpc scales:

 $w_{\text{launch}}(0.1 \text{ pc}) = 0.5 \, w_{\text{BH}}$ $v_{\text{launch}}(0.1 \text{ pc}) = 10,000 \, \text{km/s}$

"Transition"

- "Quasar" mode (high mdot)
- Move mass from Blue to Red?
- Rapid (~10⁷ yr)
- Small(er) scales (~pc-kpc)
- Morphological Transformation
- Gas-rich/Dissipational Mergers?

Regulates Black Hole Mass

"Maintenance"

- "Radio" mode (low mdot)
- Keep it Red

VS.

- Long-lived (~Hubble time)
- Large (~halo) scales
- Subtle morphological change
- Hot Halos & Dry Mergers

Regulates Galaxy Mass

Sanders, Scoville, many subsequent

