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The challenge of massive galaxies

(Here massive: Mstar ~ 10'° Mg and higher)

e Overcooling / too compact sizes

o\/\/g|

¢ Deep potential wells: Stellar driven outflows less efficient
e Hot halo cools over Hubble times and has low ang. mom.

defined sub-classes

Hubble sequence, SF vs Quiescent bimodality (also at z=2!)

e Clear differences in sizes, structure, ages

¢ Physics iIs complicated
¢ Role of BH feedback, CRs, magnetic fields, th. conduction”

R. Feldr%ann

Are these processes simulated correctly (e.g., see Volker’s talk)?
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Remarkable Progress over the past ~5 years

MW galaxies

¢ R

4.‘;".‘
Guedes et al. 201 | (‘Eris’) ‘Latte’ (Wetzel et al. 2016), FIRE-2
ms ~ 20,000 Mo, £gas ~ 120 pC my ~ 7,000 Mo, £gas ~ 20 pe FIRE-5 (actually M10T)
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Remarkable Progress over the past ~5 years

Hubble sequence in a single simulation (RF et al. 201 |)

Hubble fork in EAGLE
(Schaye et al. 2015)

green contour
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Remarkable Progress over the past ~5 years

Guo et al. 2010 FIRE-2 (Hopkins et al. to be submitted)
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Today effectively all simulations reproduce (to a degree) Mstar — Mhaio
for Milky Way masses and below.
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Aquila (Scannapieco et al. 2012) Galaxy sizes

s galaxies too compact

b Classic problem:

G3-TO

* galaxies too massive and too small, i.e. too compact

G3-CK
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Recent simulations:

e some agree well with obs. (e.g. EAGLE),

e others seem to somewhat over-predict the
galaxies too diffuse sizes for given mass & luminosity

10" e see also Annalisa’s talk

Mstellar [M®]

EAGLE (Schaye et al. 2015) Bottrell et al. 2017 (also Snyder et al. 2015) RF et al. in prep
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How comparable are sizes in simulations and observations?

e Observations: 2D Sersic fit (Galfit), extrapolated to infinity,
based on light (optical bands)

e Simulations: often 3D radii in apertures, based on mass
Simulated UV] Mock Obs, z~2

Two dozen galaxies
from MassiveFIRE (z=2)

Mock WFC3 images:

¢ Artificially redshift

® Convolve with
CANDELS FI160VV PSF

® Add average-depth
CANDELS noise

Multiple projections for
each simulated galaxy,
multiple filters/projection

Price, Kriek, RF et al in prep
-
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How comparable are sizes in simulations and observations?

Comp. with half-light radii Correction based on color gradient
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e Half-light radii are larger than half-mass radlii
¢ After color correction: no strong tilt, modest scatter, only small offset
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| Massive e Cosmological, hydrodynamical zoom-in sims of
L&« | ~40central galaxies in halos ~3x10'? - 3x10' Mo (@z=2)
et @ SPH 0 pressure-entropy formulation, Cullen-Dehnen AV

RFetal. 2016, o miy e

Gas ¢ adapiive softening: grav. softening egad= SPH smoothing length hgas

* Ming
e typjcal: star forming és:;<hspnne> ~28p
SF . -« in self-gravitating g&

& dense (neit = 5 cm™), molecular |

MassiveFIRE Eris lllustris EAGLE
MNmax / CI’TT3 004

Nerit/ CM-3 0.13 0.04 (£=0.0"1
300,000 lLy. ‘
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Feedback in Realistic Environments (FIRE) Hopkins etal.2014

Star formation:

* in locally bound, dense, Jeans unstable, molecular gas

® OSFR = PH2 / ti

* only small fraction of molecular gas is locally bound

* FB self-regulates SF to ~few % eff. per ff even in dense gas

Feedback:

SN °* mass, energy, momentum
* individual SN are time-resolved (i.e., <1 per time step)
* inject mom. at end of adiab. phase of Sedov-Taylor (if cooling radius unresolved)

stellar winds (OB/AGB) treated same way as SN but continuous injection
photo-ionization/photo-eletric heating:
e simple RT (local absorption & opt. thin long range transport)
¢ 5 bands (ionizing, far-UV, near-UV, optical/near-IR, mid/far-IR)
e luminosity absorbed (locally) by dust re-emitted in the mid/far-IR band
Radiation pressure:
e momentum only from absorption followed explicitly via RT (radial away from source)
e can in principle result in multiple scattering (IR) but typically <10% of rad.pressure
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Hopkins et al. to be submitted

2 Comparison FIRE - FIRE-2

. Feedback In Realistic Environments

* MEM instead of P-SPH: perhaps largest, most important difference
MFM & [Mov.m SPH

- y -
New Meshless Methods Here (MFV, MFM)  Unstructured / Moving—Mesh Methods Smoothed—Particle Hydrodynamics H O P ki n S et al 20 I 5
L]

e complete partition of space into overlapping volumes

e discretize integral form of Euler equations,

e results in a scheme similar to Godunov with effective faces between particles
e higher effective resolution for similar #particles than P-SPH

———— e o\

TSPH o e o | PSPH (3D Ny =200)
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Hopkins et al. to be submitted

2 Comparison FIRE - FIRE-2

. Feedback In Realistic Environments

* new SN injection scheme that ensures isotropic injection
* no artificial pressure floor in FIRE-2: “does more harm than good”
* Increased mass resolution: e.g., for MW mp ~ 7000 Mo

* overall good agreement between FIRE and FIRE-2
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What have we learned?
A lot! For example,

e Feedback => self-regulate SF on galactic scales, Kennicutt-Schmidt relation

e On cosmological scales: SFR set by the gas inflow into galaxies,
counter-intuitive: SFR sets gas mass of galaxies (not the other way round)

¢ halos mass drives many galaxy properties, but halo accretion rate 2nd
parameter (especially for SFR: ‘cosmological starvation’)

at z=2: comb. of starbursts & cosm. starv.

B Star forming SSFR external

® Quiescent
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What are the current challenges?

e \\hat is the origin of quiescent galaxies at low and high z*?

15 24

¢ \Vhat is stopping the mass growth of massive galaxies?
e \What is the role of AGN feedback? (see also e.g. Joop’s, Yohan'’s talks)

¢ How do galaxies grow in size (mergers, progenitor bias, ‘compaction’)?

w
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Adding BH to MassiveFIRE

Accretion:

(Galactic scales Intermediate scales

Local |
>>10 pc) (BH sphere of influence) DEEl SCEES

(<<0.1 pc)

torques from bars, eccentric nuclear disk

spiral arms etc (disk fraction, disk mass) ol eliiese

explicitly resolved Hopkins & Quataert 2010

e cap at 10 x Eddington (rad. efficiency 10%)
* fraction of mass from gas particles in accretion radius (RO~100 pc) added to BH

BH dynamics:
* Mseed ~ 10* Mo in 107 Mo halos
e dynamical friction on resolved scales: boost dynamical mass by x300
e merge If within accretion radius and relative velocity < escape speed

Feedback: « model: BAL winds
e particles around BH kicked radially: v~1000 km/s, dP/dt ~ 10 L/c
e N0 decoupling from hydro, cooling not turned-off

-
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Adding BH to MassiveFIRE

h206 HR - N 4~ 8 log(X/Mkpe—?)

800 kpc

z=2.06 ’!

Angléz-Alcazar et al. in prep
- ~~
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Some (preliminary) results

— h113_ SR
— h113 SR v3pl0

— h2_SR
= h2_SR_v3pl0

Redshift

e large variations in accretion rate (esp. at high z, where often near Eddington)
e BH feedlback appears to not affect galaxy masses

e BH feedback affects BH growth at z<2 but no consistent effect at high z

-
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Summary

¢ Massive galaxies are complex systems that pose a number of
challenges

e significant progress over the past ~5 years but some major
gquestions still open e.qg.,

® Origin of quiescent galaxies
¢ reproducing galaxy morphologies
® galaxy sizes

e other drivers besides halo mass

e BH feedback promising candidate to solve some of these
problems but proper modeling remains challenging
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