FIREd up, ready to go! Successes and Challenges of cosmological simulations of massive galaxies

> Robert Feldmann University of Zurich

E. Quataert (Berkeley), P. F. Hopkins (Caltech), D. Kereš (UC San Diego), C-A. Faucher-Giguère (Northwestern), Daniel Angléz-Alcázar (Northwestern), Sedona Price (Berkeley), Mariska Kriek (Berkeley)

The challenge of massive galaxies

(Here massive: $M_{star} \sim 10^{10} M_{\odot}$ and higher)

Overcooling / too compact sizes

- Deep potential wells: Stellar driven outflows less efficient
- Hot halo cools over Hubble times and has low ang. mom.

• Well defined sub-classes

- Hubble sequence, SF vs Quiescent bimodality (also at z=2!)
- Clear differences in sizes, structure, ages

Physics is complicated

- Role of BH feedback, CRs, magnetic fields, th. conduction?
- Are these processes simulated correctly (e.g., see Volker's talk)?

Remarkable Prc

MW galaxies

Guedes et al. 2011 ('Eris') m_b ~ 20,000 M $_{\odot}$, ε_{gas} ~ 120 pc 'Latte' (Wetzel et al. 2016), FIRE-2 m_b ~ 7,000 M☉, ε_{gas} ~ 20 pc

FIRE-5 (actually MI01)

Remarkable Progress over the past ~5 years

Carving through the Codes: Challenges in Computational Astrophysics, Davos, February 2017

Remarkable Progress over the past ~5 years

Guo et al. 2010

FIRE-2 (Hopkins et al. to be submitted)

Today effectively all simulations reproduce (to a degree) $M_{\text{star}}-M_{\text{halo}}$ for Milky Way masses and below.

Aquila (Scannapieco et al. 2012)

Galaxy sizes

Classic problem:

• galaxies too massive and too small, i.e. too compact

Recent simulations:

- some agree well with obs. (e.g. EAGLE),
- others seem to somewhat over-predict the sizes for given mass & luminosity
- see also Annalisa's talk

EAGLE (Schaye et al. 2015)

Bottrell et al. 2017 (also Snyder et al. 2015)

RF et al. in prep

How comparable are sizes in simulations and observations?

- Observations: 2D Sersic fit (Galfit), extrapolated to infinity, based on light (optical bands)
- Simulations: often **3D** radii in **apertures**, based on **mass**

simple RT accounting for dust absorption

Mock WFC3 images:

- Artificially redshift
- Convolve with CANDELS FI60W PSF
- Add average-depth CANDELS noise

Multiple projections for each simulated galaxy, multiple filters/projection

How comparable are sizes in simulations and observations?

Price, Kriek, RF et al in prep

- Half-light radii are larger than half-mass radii
- After color correction: no strong tilt, modest scatter, only small offset

RF et al. 2016

- Cosmological, hydrodynamical zoom-in sims of ~40 central galaxies in halos ~3×10¹² 3×10¹³ M⊙ (@z=2)
 SPH in pressure-entropy formulation, Cullen-Dehnen AV
 no BH feedback
- High numerical resolution: tens of pc, $m_b \sim few 10^4 M_{\odot}$
- Gas adaptive softening: grav. softening ε_{gas} = SPH smoothing length h_{gas}
 minimum h_{spline} ~ 12 pc (but not a meaningful quantity)
 typical: star forming gas: <h_{spline} ~ 28 pc, <n> ~ 1000 cm⁻³
- in self-gravitating gas [& dense ($n_{crit} = 5 \text{ cm}^{-3}$), molecular]
- **Note:** $\epsilon_{gas} => max$. density n_{max} at which self-gravity computed correctly
 - if $n_{crit} \sim n_{max}$, SF sensitive to choice of n_{crit}
 - if $n_{crit} > n_{max}$ can form stars only if $h_{gas} << \epsilon_{gas}$; turbulence
 - cold gas properties incorrect, lower SFR, more bursty SF

	MassiveFIRE	Eris	Illustris	EAGLE
n _{max} / cm ⁻³	~700	0.14	0.04	0.06
n _{crit} / cm ⁻³	5	5	0.13	0.04 (Z=0.01)
0,000 l.y.			Fel	
			eć.	

Feedback in Realistic Environments (FIRE) Hopkins et al. 2014

Star formation:

- in locally bound, dense, Jeans unstable, molecular gas
- $\rho_{SFR} = \rho_{H2} / t_{ff}$
- only small fraction of molecular gas is locally bound
- FB self-regulates SF to ~few % eff. per ff even in dense gas

Feedback:

- **SN** mass, energy, momentum
 - individual SN are time-resolved (i.e., ≤ 1 per time step)
 - inject mom. at end of adiab. phase of Sedov-Taylor (if cooling radius unresolved)

stellar winds (OB/AGB) treated same way as SN but continuous injection

photo-ionization/photo-eletric heating:

- simple RT (local absorption & opt. thin long range transport)
- 5 bands (ionizing, far-UV, near-UV, optical/near-IR, mid/far-IR)
- Iuminosity absorbed (locally) by dust re-emitted in the mid/far-IR band

Radiation pressure:

- momentum only from absorption followed explicitly via RT (radial away from source)
- can in principle result in multiple scattering (IR) but typically <10% of rad.pressure

Comparison FIRE – FIRE-2

• MFM instead of P-SPH: perhaps largest, most important difference

- complete partition of space into overlapping volumes
- discretize integral form of Euler equations,
- results in a scheme similar to Godunov with effective faces between particles
- higher effective resolution for similar #particles than P-SPH

Comparison FIRE – FIRE-2

- new SN injection scheme that ensures isotropic injection
- no artificial pressure floor in FIRE-2: "does more harm than good"
- \bullet increased mass resolution: e.g., for MW m_b ~ 7000 M_\odot
- overall good agreement between FIRE and FIRE-2

What have we learned?

A lot! For example,

- Feedback => self-regulate SF on galactic scales, Kennicutt-Schmidt relation
- On cosmological scales: SFR set by the gas inflow into galaxies, counter-intuitive: SFR sets gas mass of galaxies (not the other way round)
- halos mass drives many galaxy properties, but halo accretion rate 2nd parameter (especially for SFR: 'cosmological starvation')

RF et al. 2015, 2016, 2017, RF et al in prep

What are the current challenges?

- What is the origin of quiescent galaxies at low and high z?
- What is stopping the mass growth of massive galaxies?
- What is the role of AGN feedback? (see also e.g. Joop's, Yohan's talks)
- How do galaxies grow in size (mergers, progenitor bias, 'compaction')?

15

24

Adding BH to MassiveFIRE

Accretion:

Galactic scales (>>10 pc) torques from bars, spiral arms etc

explicitly resolved

Intermediate scales (BH sphere of influence)

eccentric nuclear disk (disk fraction, disk mass)

Hopkins & Quataert 2010

Local scales (<<0.1 pc) viscous stress

- cap at 10 x Eddington (rad. efficiency 10%)
- fraction of mass from gas particles in accretion radius (R0~100 pc) added to BH

BH dynamics:

- $M_{seed} \sim 10^4\,M_{\odot}$ in $10^7\,M_{\odot}$ halos
- dynamical friction on resolved scales: boost dynamical mass by x300
- merge if within accretion radius and relative velocity < escape speed
- Feedback: model: BAL winds
 - particles around BH kicked radially: v~1000 km/s, dP/dt ~ 10 L/c
 - no decoupling from hydro, cooling not turned-off

Adding BH to MassiveFIRE

Carving through the Codes: Challenges in Computational Astrophysics, Davos, February 2017

Some (preliminary) results

- large variations in accretion rate (esp. at high z, where often near Eddington)
- BH feedback appears to not affect galaxy masses
- BH feedback affects BH growth at z<2 but no consistent effect at high z

Summary

- Massive galaxies are complex systems that pose a number of challenges
- significant progress over the past ~5 years but some major questions still open e.g.,
 - origin of quiescent galaxies
 - reproducing galaxy morphologies
 - galaxy sizes
 - other drivers besides halo mass

• BH feedback promising candidate to solve some of these problems but proper modeling remains challenging