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Motivation
HOW DID WE GET TO GALAXIES TODAY?
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Structure grows hierarchically:
must understand mergers
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Our Conventional Wisdom (Toomre):
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Our Conventional Wisdom (Toomre):

Major mergers destroy disks

Minor mergers make thick disk

Remnant has an r'/4 law profile

Remnant size/metallicity/shape retains
“memory” of disk “initial conditions”

F. Summers
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Motivation
HOW DID WE GET TO GALAXIES TODAY?

Today, many of these are *problems™...
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Stellar disk-disk merger remnants don’t look like bulges!
-- sizes too large
-- profiles too flat
-- shapes too flattened
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So What About Today’s Models 1s Different?
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T= 0Myr Gas
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T= 0Myr Gas

\

Tidal torques = large, rapid gas inflows (e.g. Barnes & Hernquist 1991)
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T= 0Myr Gas
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T= 0Myr Gas

\

Triggers Starbursts (e.g. Mihos & Hernquist 1996)
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T= 0Myr Gas
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T= 0Myr Gas

\

Fuels Rapid BH Growth (e.g. D1 Matteo et al., PFH et al. 2005)
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T= 0Myr Gas
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T= 0Myr Gas

\

Feedback expels remaining gas, shutting down growth (more later...)
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T= 0Myr Gas
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T= 0Myr Gas

\

Merging stellar disks grow spheroid
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T= 0Myr Gas
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Gas Loses Angular Momentum: Participates in a Massive Starburst
(NOW SIMULATIONS CAN FOLLOW FROM ~ KPC to ~ 0.1 PC)

* Follow gas from
10s of kpc to ~0.1 pc

 Cascade of instabilities:
merger itself not dominant
inside of a kpc

e Instabilities change form
at BH radius of
influence: continue on
to fuel SMBH

PFH & Quataert 2009,20
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Gas Loses Angular Momentum: Participates in a Massive Starburst
(NOW SIMULATIONS CAN FOLLOW FROM ~ KPC to ~ 0.1 PC)

 Follow gas from
10s of kpc to ~0.1 pc
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e Instabilities change form
at BH radius of
influence: continue on
to fuel SMBH
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Gas Loses Angular Momentum: Participates in a Massive Starburst
(NOW SIMULATIONS CAN FOLLOW FROM ~ KPC to ~ 0.1 PC)

More Gas (f,,.)
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What About the Gas that Does Lose Angular Momentum?
CAN WE MAKE A REAL ELLIPTICAL?

Borne et al., 2000

Sanders, Scoville,
Soifer,
& others since:

Compare local
starburst
ULIRGs: SFR up to
>100 M_,/yr

Essentially all late-
stage
merger remnants

Compact (~kpc scales)

) L )
Evidence for SB-QSO Are they the progenitors of ellipticals®
transition?
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What About the Gas that Does Lose Angular Momentum?
STARBURSTS: ON THEIR WAY TO ELLIPTICALS?

Radiative Transfer: SUNRISE by P. Jonsson

Not just at z=0, but in high-redshift sub-millimeter galaxies
(e.g. work by Melbourne, Narayanan, Genzel & co.)

“dust,,
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What About the Gas that Does Lose Angular Momentum?
STARBURSTS: ON THEIR WAY TO ELLIPTICALS?

Radiative Transfer: SUNRISE by P. Jonsson

Not just at z=0, but in high-redshift sub-millimeter galaxies

(e.g. work by Melbourne, Narayanan, Genzel & co.) Pope et al. (2006-2008) Kovacs et al. (2006)
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What About the Gas that Does Lose Angular Momentum?
STARBURSTS: ON THEIR WAY TO ELLIPTICALS?

Radiative Transfer: SUNRISE by P. Jonsson

Not just at z=0, but in high-redshift sub-millimeter galaxies
(e.g. work by Melbourne, Narayanan, Genzel & co.)

Younger et al. 2009,
Narayanan et al. 2010
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How does this relate to bulge formation?

Tuesday, December 25, 12



The Problem: The Fundamental

Plane & Bulge Densities: -

o
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- - = = |nitial Gas Profile
Gas-Rich Mergers
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The Solution: Gas-Rich Mergers

Increased dissipation—>smaller, more compact
remnants (Cox; Khochfar; Naab; Robertson)
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PFH, Cox et al. 2008
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The Solution: Gas-Rich Mergers

Increased dissipation—>smaller, more compact
remnants (Cox; Khochfar; Naab; Robertson)

“Compact” Ellipticals?
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Starburst Stars Leave a “Footprint” on the Profile
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Mihos & Hernquist 1994

Mburst '

] Merger remnant elliptical profiles
should be fundamentally
two-component:

=== Pre-starburst/Disk

(dissipationless, violently
relaxed)

Starburst
(dissipational, no strong

violent relaxation)

R(1/4)

Not observed at the time:
“Can the merger hypothesis be reconciled with the lack of dense stellar cores in most normal

ellipticals?” (MH94)
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Kormendy et al. 2008
(also Hibbard & Yun,
Rothberg & Joseph,
Lauer et al., Cote et al.,

Since then... Ferrarese et al.)
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Starburst Stars Leave a “Footprint” on the Profile
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS
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“Normal and low-luminosity ellipticals... in fact, have extra, not missing light at at small radii
with respect to the inward extrapolation of their outer Sersic profiles.”
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Application: Merger Remnants
RECOVERING THE ROLE OF GAS

PFH & Rothberg et al. 2008
PFH, Kormendy, & Lauer et al. 2008

Apply this to a well-studied sample of local merger remnants & ellipticals:
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Application: Merger Remnants
RECOVERING THE ROLE OF GAS

PFH & Rothberg et al. 2008
PFH, Kormendy, & Lauer et al. 2008

Apply this to a well-studied sample of local merger remnants & ellipticals:
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Application: Merger Remnants
RECOVERING THE ROLE OF GAS

PFH & Rothberg et al. 2008
PFH, Kormendy, & Lauer et al. 2008

Apply this to a well-studied sample of local merger remnants & ellipticals:
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Structure in Elliptical Light Profiles

PFH & Rothberg et al. 2008
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

PFH, Kormendy, & Lauer et al. 2008
Starburst gas mass needed to

match observed profile (or

fitted to profile shape):

fstarbust

- Observed Disk
Gas Fractions:

o4 2Z2=0 o o
- - 0 0
z O |
9.0 95 10.0 105 110 11.5 120 9.0 95 100 105 110 115 120
log( M, / Mg) log( M, / My)

You can and do get realistic ellipticals given the observed
amount of gas in progenitor disks

Independent checks: stellar populations (younger burst mass);
metallicity/color/age gradients; isophotal shapes; kinematics;
recent merger remnants; enrichment patterns (Foster+, Forbes+, Lauer+, Hoffman+)
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Cox et al. 2006
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?

Given a galaxy, isolate ‘burst relic’ Xl clic stars (R)
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What else can we learn from the ‘relics’ of gas dissipation?

If formed dissipationally, then this reflects gas-star conversion “in situ”

Z7“elz'c stafrs(R) ™ 2gas for bu’rst(Rat — tbufrst)
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?

Assume Schmidt-Kennicutt law applies: Recover SFH

Y s (By 1) — Su(R,t) — Syas(R,t + At)
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?
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Re-construct SFR(t) for each burst :

SFR (Total) [Mgyr']
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PFH & Hernquist 20

Recover the IR LF of dissipational starbursts!

Re-constructed burst LF
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PFH & Hernquist 20
Bursts always dominate at high L, but the threshold shifts

Re-constructed burst LF
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Bursts never dominate the SFR density!

PFH

& Hernquist 20
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What happens in an “extreme” case?
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Typical fgas in high-z massive
disks up to ~40%
(Erb+, Tacconi+, Manucci+)

fas=0.4 merger, ~1kpc
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PFH, Bundy, et al. 2009
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Spheroid size evolution
corresponds to the
expectation from
evolving gas fractions!
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Do we see the ‘footprint’ today?

How did the high-z systems evolve
to be ‘normal’ at z=0?

_"__!\ r Y Y ¥ Y ' Y 14 Y l Y Y ' ¥ Y Y Y |

log(Z) [Mgkpc?]

(0]

0.5 1.0 1 .5 2.0 e
R1/4 [kpcll4]

Tuesday, December 25, 12



Do we see the ‘footprint’ today?

How did the high-z systems evolve
to be ‘normal’ at z=0?

'“'!. [ Y Y ¥ Y [ 4 L} 4 L4 I 4 Y ¥ L

log(Z) [Mg kpc?]

7! PFH, Murray, etal. 2009 .\~

0:5 1.0 1S 2.0 e
R1/4 [kpc1/4]

No more (centrally) dense
than massive Es today!
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In fact, never see much higher densities.....

cees feedbaCk? PFH, Murray, Thomp
et al. 2009
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Do we see the ‘footprint’ today?

How did the high-z systems evolve
to be ‘normal’ at z=0?

L ' L Y Y Y ] ¥ T |

~—- I

e
11— z=0 Massive E

P

7| PFH, Murray, etal. 2009 O\
0.5 1.0 1.5 2.0 2.5
R1/4 [kpClM]

Missing the low-density “wings”:

Only need to
accrete ~Mgar 1n “fluff”, to
increase Re by a factor ~6!

PFH, Bundy,
et al. 2009

also Bezanson,
Naab et al.
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Implications for Evolution in BH-Host Correlations

* In self-regulated models: BH stops growing when energy released ~ binding energy
* Hosts more gas rich/compact at high-z =» more “work” for the BH before self-regulation

1.0
S
D
o
S~
)
S . S e N W | (R e S S T A S x i
o [ Size evolution of 0.008 | Correspondmg increase
- spher0|d hosts g in Mpy /Mo
00 05 1 0 1.5 20
z
: PFH et al. 2006, 2007 |
* Doesn’t mean that BHs — ——
grew “before” their bulges 00 05 10 15 20 25 B30 35
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But what about the highest gas fractions?
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How Good Is Our Conventional Wisdom?
GaS'RICh (fgas ind 01)

Gas-Richer (fgas ~ 0.4)

stars gas

Robertson et al. 2006
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Major Merger Remnants
DO MERGERS DESTROY DISKS?

Bulge (B/T =0.2) Stellar Disk Gas Disk

— 20 v bR Pl At R AR M

z [kpc]

| ARAS ARAS |

[ R

200
100

10

01
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The Unsolved Questions
HOW CAN A DISK SURVIVE?

Stellar disks are collisionless: they violently relax when they collide

Can’t “cool” into a new disk
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The Unsolved Questions
HOW CAN A DISK SURVIVE?

Gas 1s collisional (will cool into new disk): only goes
to center and bursts if angular momentum 1s removed

alllll> - < -

Brooks et al., Governato et al.

Tuesday, December 25, 12



How Do Disks Survive Mergers”? PFH et al. 2008

What does the torquing?

Stars 1n the same galaxy

companions -- bars -- gas/star offset -- torques -- gas inflow
(see, e.g., Barnes 92, Barnes & Hernquist 96, Mihos & Hernquist 94,96)

gas
(contours)
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How Do Disks Survive Mergers?

stars
(color)

gas

(contours)

Compare:

Self-torque in gas disk (Lynden-Bell & Kalnajs 1972):
2
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How Do Disks Survive Mergers?

stars
(color)

gas

(contours) \

Compare:

Self-torque in gas disk (Lynden-Bell & Kalnajs 1972):
2
(~ 0,1)/ \(N 0.1V,)
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How Do Disks Survive Mergers?

stars
(color)

gas

(contours)

Compare:

Self-torque in gas disk (Lynden-Bell & Kalnajs 1972):
2
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How Do Disks Survive Mergers?

..............................

stars
(color)

gas

(contours) \

Compare:

Self-torque in gas disk (Lynden-Bell & Kalnajs 1972):
2
Vinflow ~ (0.01 — 0.1) |a|” cs

Torques from stars when strong shocks induced (PFH & EQ, in prep):
Vinflow ~ |a| Ve (~100-1000x larger!)
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. 3 ‘7
How Do Disks Survive Mergers' Burst mass vs. faas

0671 g
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i 02 038 iot®
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03 N .

0.21 R ///‘.f*

0.1 0.2 0.3 0.4
Immediate Pre-Merger Gas Fraction f__,
(gas-dependent
PFH et al. 2008 prediction)
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How Do Disks Survive Mergers?

Can analytically determine
burst masses and properties
as a function of e.g.
orbital parameters, fgas,
merger mass ratio, etc.

PFH et al. 2008

Remnant B/T

[ 150 R T : Py
- Orbital Parameters: P
v Prograde ¢ Retrograde ® AS
OV ale i
- Gas Fraction: _ e 'g
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! ’ o &
-y pu (s
| vO A O e
Vot
06 ‘ - C)]< .:V(O A
| ﬁv 9 O . L
+ >V ‘k %
0.4 S ik at
i | . 008- -
0 ©
\% O. Y+ x x¥
1 ++ o. O
0.2} ¥ ja
2 | 6 [.17‘ %
EV’ | + Structural Properties:
| ﬁ L ?ompaot/Extended
oo | DR N SN ... ... S
0.0 0.2 0.4 0.6 0.8 1.0

Mass Ratio u,
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How Do Disks Survive Mergers?

1.0 | Orbital Parameters: o o BN .
v Prograde <y Retrograde 07 Oo% x4 %
- Gas Fraction: o S W
0.8 OGas-Rich O Gas-Poor O & 3 .’oi?c
. . * A Q@
Can analytically determine - | 9 % o4
: % A
burst masses and properties % 0.6 " o . )
. : . *
as a function of e.g. © gy S
D - -~ ! ¢
orbital parameters, fqas, £ 04 o  o%% "
. oC ‘
merger mass ratlio, etc. . ‘: w4, S o+
0.2 o o ¥
6 R Structural Properties:
e Compact/Extended
0.0 e GO
0.0 0.4 0.6 0.8 1.0

Mass Ratio u,

REALLY IMPORTANT!!!

PFH et al. 2008
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Why Do We Care? PFH & Somerville et al. 200
HOW DISK SURVIVAL IN MERGERS IS IMPORTANT

Fold this into a cosmological model: why do we care?

1.0 _ﬁn,.y_I.‘Y .-,”, L o o o e 1.0
0.8l ® T 2=2] o8 Relic B/T. after a major
» \J = merger with these gas
LN T = fractions
0.6 - 1 % 0.6
B J | =
L k ‘ — 4 qh) 4
0.4] I * g 0
0.2} A N T @ 0.2
. Erbetal. - =S
0.0 L bdid (SR SR WWRRRETEEE e - 0.0 r L33 Laia
8 9 10 11 12 8 9 10 11 12
log( M, / M) log( M, / M)

Low-mass galaxies have high gas fractions: less B/T for the same mergers
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Why Do We Care?
HOW DISK SURVIVAL IN MERGERS IS IMPORTANT

1.0 1.0
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0.8 \ ' ‘ Z=2 ~ 0.8 u=0.1
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§ 04+ -
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Why Do We Care?
HOW DISK SURVIVAL IN MERGERS IS IMPORTANT

Mergers don’t bring most mass into disks, but can remove it

Morphology Mass Relation:

Emerges naturally *if* low-mass galaxies keep more gas around

Weinzirl, Jogee
observations

F\g 0.6 (prediction o
= including .(pred%ctlons
"‘5; cia effects of gas) ignoring effects
& . of gas)
0.2
004" | T ey
0.0 0.2 0.4 0.6 0.8 1.0

PFH & Somerville et al. 2009
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High-Redshift:
WILL ONLY INCREASE IN IMPORTANCE

Need to explain high-z massive disks
We see them
(Genzel, Tacconi, Erb, Law, et al.)

May explain some properties (turbulence etc.)

(Robertson & Bullock, 2009)
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High-Redshift:
WILL ONLY INCREASE IN IMPORTANCE

Need to explain high-z massive disks
We see them
(Genzel, Tacconi, Erb, Law, et al.)

May explain some properties (turbulence etc.)
(Robertson & Bullock, 2009)

Genzel et al.

Robertson &
Bullock 2008
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What About Disk Heating?
WON’T YOU OVER-PRODUCE THE THICK DISK?

Toth & Ostriker (1992): Rigid satellite in static potential,
decay by dynamical friction on circular orbit:

AH M,
Heating : R X ﬁl
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What About Disk Heating?
WON’T YOU OVER-PRODUCE THE THICK DISK?

Toth & Ostriker (1992): Rigid satellite in static potential,
decay by dynamical friction on circular orbit:

AH M,
Heating : R X M

dN M2 —1
Satellite mass functions: dlog(M2 /Ml) X (ﬁl)

Equal contributions to thick disk from all intervals in M2/M;!

No more than ~10% MW growth from any mass ratios
since z~1-2!

Tuesday, December 25, 12



What About Disk Heating?

WON’T YOU OVER-PRODUCE THE THICK DISK?

In fact, orbits are radial, satellites strip, potentials are live:

AH
Gives: R

Dubinski et al.

Mo

OCM

0.00

Younger et al.
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What About Disk Heating?
WON’T YOU OVER-PRODUCE THE THICK DISK?

In fact, orbits are radial, satellites strip, potentials are live:

AH Mo 2
1ves: X
o R M,

0.100 |- AH o (MQ/Ml.).- A .
- g v
- A 7 b (19 P 29 b b
50 0 | See 1n “live” simulations:
§ Velazquez & White,
< 0.010F A . . .
&) ; % : Villalobos & Helmi
W s AH o (My/M;)? ‘
& with cosmological ICs:
|
0.001 0.010 0.100

5 Kazantzidis et al.
Sum over Encounters of (M /M)
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What About Disk Heating?
WON’T YOU OVER-PRODUCE THE THICK DISK?

In fact, orbits are radial, satellites strip, potentials are live:
AH ( Mo ) 2
Gives: X
R M,

Heating dominated by few big events
Super-thin disks can exist
More variation in thick disks

Thick disk doesn’t constrain total MW growth, does
constrain the biggest event MW could have experienced

Tuesday, December 25, 12



Summary

Ellipticals are smaller than spirals! How do we make a real elliptical?

Gas! Dissipation builds central mass densities, explains observed scaling laws: just
need disks as gas rich as observed (fgas ~ 0.1 - 0.5)

Explains compact z~2 sizes, and evolution to today?

Relics of starbursts are important in today’s Universe

They match the population of IR-luminous starbursts now being seen at high-z

How do disks survive mergers? (How do we avoid making all ellipticals?)
Gas! No stars = No angular momentum loss

Particularly important at high-z: May see unique kinematic signatures

Drives the starburst history of the Universe, but not always as you’d expect

Don’t forget about black holes and AGN (a talk for another day...)
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