Quasars, Feedback, and Galaxy Interactions

Philip Hopkins

04/10/08

Lars Hernquist, T. J. Cox, Dusan Keres, Volker Springel, Brant Robertson, Paul Martini, Adam Lidz, Tiziana Di Matteo, Yuexing Li, Josh Younger, Sukanya Chakrabarti, Gordon Richards, Alison Coil, Adam Myers, and many more

Every massive galaxy hosts a supermassive black hole

These BHs accreted most of their mass in bright, short lived quasar accretion episodes: the "fossil" quasars

Yesterday's Quasar is today's Red, Early-Type Galaxy:

Black holes are somehow sensitive to their host galaxies (bulges):

Simplest Idea: FEEDBACK ENERGY BALANCE (SILK & REES '98)

- Luminous accretion disk near the Eddington limit radiates an energy: h = 0 (dM_{pu}/dt) c^2 (n = 0, 1)
 - > L = $e_r (dM_{BH}/dt) c^2 (e_r \sim 0.1)$
- Total energy radiated:
 - $> \sim 0.1 \text{ M}_{BH} \text{ c}^2 \sim 10^{61} \text{ ergs in a typical } \sim 10^8 \text{ M}_{sun} \text{ system}$
- Compare this to the gravitational binding energy of the galaxy:

> ~ $M_{gal} s^2$ ~ (10¹¹ Msun) (200 km/s)² ~ 10⁵⁹ erg!

- If only a few percent of the luminous energy coupled, it would unbind the baryons in the galaxy!
 - Turn this around: if some fraction h ~ 1-5% of the luminosity can couple, then accretion must stop (the gas will all be blown out the galaxy) when

> MBH ~ $(a/he_r) M_{gal} (s/c)^2 ~ 0.002 M_{gal}$

This "feedback" energy can affect other things: star formation cooling subsequent growth of the galaxy subsequent growth of nearby galaxies!

It comes in many forms:

radio jets winds (from the accretion disk) radiation pressure/ galactic winds Compton heating ionization

Quasars were active/BHs formed when SF shut down...

PFH, Lidz, Coil, Myers, et al. 2007

Motivation MAYBE THIS CAN EXPLAIN OTHER, LONG-STANDING PROBLEMS?

Why are there no massive, bulge-dominated star forming (blue) galaxies?

Why do massive galaxies *stop* growing while their host halos keep growing?

"Transition" vs.

- Move mass from Blue to Red
- Rapid
- Small scales
- "Quasar" mode (high mdot)
- Morphological Transformation
- Gas-rich/Dissipational Mergers

"Maintenance"

- Keep it Red
- Long-lived (~Hubble time)
- Large (~halo) scales
- "Radio" mode (low mdot)
- Subtle morphological change
- "Dry"/Dissipationless Mergers

No reason these should be the same mechanisms... what connections?

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

(b) "Small Group"

- halo accretes similar-mass companion(s)
- can occur over a wide mass range
- Mhalo still similar to before: dynamical friction merges the subhalos efficiently

- halo & disk grow, most stars formed
- secular growth builds bars & pseudobulges
- "Seyfert" fueling (AGN with ME>-23)
- cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center:
- starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback,

1000

100

10

0.1

12

9

8

-2

logiol Lqso 10

[Mo yr-1

SFR

but, total stellar mass formed is small

C

-1

0

Time (Relative to Merger) [Gyr]

(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback - remaining dust/gas expelled
- get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

- dust removed: now a "traditional" QSO - host morphology difficult to observe: tidal features fade rapidly
- characteristically blue/young spheroid

(g) Decay/K+A

- QSO luminosity fades rapidly - tidal features visible only with very deep observations - remnant reddens rapidly (E+A/K+A) "hot halo" from feedback - sets up quasi-static cooling

Three Outstanding (Inseparable?) Questions:

Three Outstanding (Inseparable?) Questions:

Triggering

How? When? Angular Momentum? Self-suppression?

Lightcurves

Lifetimes? Self-Regulation? Variability? Feedback?

Feedback

Coupling mechanisms? "Quasar" vs. "Radio" mode? Large-scale impact?

Three Outstanding (Inseparable?) Questions:

Triggering & Fueling: "Feeding the Monster" WHAT CAN BREAK DEGENERACIES IN DIFFERENT FUELING MODELS?

- If BHs trace spheroids, then *most* mass added in mergers
- Other candidates must also be:
- Fast, violent
- Blend of gas & stellar dynamics
- Why?

* Soltan (1982): bulk of SMBH mass density grown through radiatively efficient accretion in quasars

→ gas dynamics; rapid (~ few 10⁷ years)

- * Lynden-Bell (1967): orbits of stars redistributed in phase space by large, rapid potential fluctuations
 - → stellar dynamics; freefall timescale

Candidate Process: Gas-Rich, Major Merger

- Locally, seen related to:
 - growth of spheroids
 - causing starbursts (ULIRGs)
 - fueling SMBH growth, quasar activity

Komossa et al. (2003)

Plausible Physical Mechanism

- Tidal torques ⇒ large, rapid gas inflows (e.g. Barnes & LH 1991)
- Triggers starburst (e.g. Mihos & LH 1996)
- Feeds BH growth (e.g. Di Matteo et al. 2005)
- Merging stellar disks grow spheroid
- Requirements:
 - major merger
 - supply of cold gas
 ("cold" = rotationally supported)

Other Fueling Mechanisms: Minor Mergers

10

left: Projected gas density right: Projected stellar density XY, the orbital plane

Isolated Disk (Sbc) Galaxy Run: execute/G3G1-u3 T.J. Cox & Patrik Jonsson, UC Santa Cruz UC Santa Cruz, 2004 10.0 10" 10* 10 Central-Satellite Minor Mergers 10⁻² 10-3 10" 10-5 104 Satellite-Satellite Major Mergers 10-2 10 10 10.4 10 11 14 12 log(M.... / h⁻¹ M.)

Central Galaxy Major Mergers (per Halo)

- Not so violent -probably don't dominate spheroid formation (LMC/SMC)
- Not very efficient: even if growth
 - ~ M_secondary/M_primary, major mergers "win"

Besla et al. (2007)

Other Fueling Mechanisms: Minor Mergers

- Minor Mergers
 - Can get to ~1-2 10^7 M_sun ::: *very* hard to push beyond this

Other Fueling Mechanisms: Minor Mergers

Other Fueling Mechanisms: Disk/Bar Instabilities

- Secular Evolution/Disk Instabilities
 - Most mass in "classical" bulges, not "pseudobulges":
 - But, *are* important below <~ Sa-types
 - Does it really solve the angular momentum problem? (Jogee et al.)

Other Fueling Mechanisms: Disk/Bar Instabilities

Bar & Toomreunstable disk simulations:

 Same caveats as minor mergers: don't build massive bulges: doesn't matter if you can get the gas in!

0 Myr

Emergent Picture:

- Seyfert-Quasar divide is a good proxy!

So let's (for now) consider mergers & bright quasars: CAN WE MODEL IT?

- Modeling "Quasar" Feedback
- ~5% to match observed M-sigma normalization (Silk & Rees '98)
 - Line opacities + AGN spectrum (Sazonov et al.)
 - Momentum driven winds (Murray et al.)
 - Disk wind simulations (Proga et al.)

Probably not radio jets

The Simulations THE AGN...

- R_{sch} ~ few AU ~ 10⁻⁶ x our resolution
- RBondi ~ 10 pc (typical)
 - Bondi-Hoyle accretion rate (max Eddington)
 - ~0.1 radiative efficiency (high-mdot)
 - ~5% couples to local gas (thermally)

T = 0 Myr

Gas

Quasar Lightcurves:

Multi-phase ISM decomposition: gas+dust+metal columns

M-sigma Relation Suggests Self-Regulated BH Growth PREVENTS RUNAWAY BLACK HOLE GROWTH

Explains all the observed BH-Host Correlations BUT WHAT IS THE "FUNDAMENTAL" CORRELATION?

PFH et al. 2007

Which Correlation Is "Most Fundamental"? **COMPARE RESIDUALS**

~3s significant residual trend with respect to ANY single variable correlation!

Tuesday, December 25, 12

Alog(M_{BH} I o)

Alog (M_{BH} I o)

-0.5

-0.5

∆log(M, I R_)

Which Correlation Is "Most Fundamental"? WHAT ELIMINATES THE SECONDARY VARIABLES?

- Find a FP-like correlation:
 - M_{bh} ~ M_{bul}^a s^b
 - M_{bh} ~ Re^a s^b
 - M_{bh} ~ M_{bul}^a R_e^b
- Roughly, bulge binding energy:

1.0

0.8

0.6

0.4

0.2

0.0

0

2

Ę

 $M_{bh} \sim E_{binding}^{0.7-0.8} \sim (M_{bul} s^2)^{0.7-0.8}$

M_{BH}∝ M.

PFH et al. 2007

Which Correlation Is "Most Fundamental"? WHAT ELIMINATES THE SECONDARY VARIABLES?

PFH et al. 2007

Observations & Simulations Suggest this Simple Picture Works SIMPLE COUPLING OF BH RADIATED ENERGY TO SURROUNDING GAS IN A MERGER

- Supports basic Silk & Rees '98 argument: BH feedback self-regulates growth in ~fixed potential only "feel" the local potential of material to be unbound

What about other fueling mechanisms? BLACK HOLE MASSES IN ISOLATED GALAXIES AND MERGER REMNANTS

Where Does the Energy/Momentum Go? QUASAR-DRIVEN OUTFLOWS?

(outflow reaches speeds of up to ~1800 km/sec)

Feedback-Driven Winds COMPARISON TO STARBURST-DRIVEN WINDS

Outflows are Explosive and Clumpy

- Rapid BH growth => point-like injection
 - Explosion, independent of coupling
- Clumpy
 - ULIRG cold/warm transition (S. Chakrabarti)
 - CO outflows (D. Narayanan)

Quasar Outflows May Be Significant for the ICM & IGM SHUT DOWN COOLING FOR ~ COUPLE GYR. PRE-HEATING?

Gas Temperature

Quasar Outflows May Be Significant for the ICM & IGM SHUT DOWN COOLING FOR ~ COUPLE GYR. PRE-HEATING?

Tuesday, December 25, 12

Feedback-Driven Winds METAL ENRICHMENT & BUILDING THE X-RAY HALO

Gas Density Stellar Density 0.00 black hole Cox et al. 2005

X-Ray Emission

no black hole

Expulsion of Gas Turns off Star Formation ENSURES ELLIPTICALS ARE SUFFICIENTLY "RED & DEAD"?

Tuesday, December 25, 12

Quasar Light Curves & Lifetimes

Feedback determines the decay of the quasar light curve:

Explosive blowout drives power-law decay in L

No Feedback:

- Runaway growth (exponential light curve)
- "Plateau" as run out of gas but can't expel it (extended step function)

PFH et al. 2006a

This is Very General: (EVEN THOUGH NOT ALL AGN ARE MERGER-DRIVEN)

- Almost any (ex. radio) AGN feedback will share key properties:
 - Point-like
 - Short input (~ t_{Salpeter})
 - E~E_binding
- Simple, analytic solutions:
 - Agrees well with simulations!
- Generalize to "Seyferts"
 - Disk-dominated galaxies with bars
 - Minor mergers

So What Is the "Quasar Lifetime"?

"Quasar Lifetime": a conditional, *luminosity-dependent* distribution

T=021 Gyr	T = 0.32 Gyr	T = 0.39 Gyr	T = 0.50 Gyr
	6		5
T = 0.57 Gyr	T = 0.68 Gyr	T = 0.75 Gyr	T = 0.86 Gyr
S			
T = 0.94 Gyr	T = 1.03 Gyr	T = 1.11 Gyr	T = 1.21 Gyr
	Q. B.	8	
T = 1.33 Gyr	T = 1.39 Gyr	T = 1.48 Gyr	T = 1.56 Gyr
T = 1.65 Cyr	T = 1.75 Cyr	T = 1.84 Cyr	T = 1.93 Oyr
State of the second second	The state		Top
			1 2
Contraction and	The second second	the section	and the second

- "Quasar Lifetime": a conditional, luminositydependent distribution
- Robust as a function of BH mass or peak QSO luminosity

Tuesday, December 25, 12

Given the Conditional Quasar Lifetime, De-Convolve the QLF QUANTIFIED IN THIS MANNER, UNIQUELY DETERMINES THE RATE OF "TRIGGERING"

If every quasar is at the same fraction of Eddington, the active BHMF (and host MF) is a trivial rescaling of the observed QLF

Given the Conditional Quasar Lifetime, De-Convolve the QLF QUANTIFIED IN THIS MANNER, UNIQUELY DETERMINES THE RATE OF "TRIGGERING"

If every quasar is at the same fraction of Eddington, the active BHMF (and host MF) is a trivial rescaling of the observed QLF

- > Different shapes
- Much stronger turnover in formation/merger rate
- Faint-end QLF dominated by decaying sources with much larger peak luminosity/hosts

Similar populations at different (short) evolutionary stages dominate QLF

Quasar Clustering is a Strong Test of this Model IF FAINT QSOS ARE DECAYING BRIGHT QSOS - SHOULD BE IN SIMILAR HOSTS

- Weak dependence of clustering on observed luminosity
 - (Croom et al.,
 Adelberger & Steidel,
 Myers et al.,
 Coil et al., Porciani et al.)

Where Quasars Are Born

• Observed excess of quasar clustering (quasar-galaxy and quasar-quasar pairs) on small scales, relative to "normal" galaxies with the same masses/large-intermediate scale clustering

• Predicted by merger models (Thacker & Scannapieco et al., PFH)

Where Quasars Are Born

- Small-Scale Excess:
 - Not seen in Seyferts:
 - Suggests different processes dominate fueling below $M_B \sim -23$ $(M_{BH} \sim 10^7)$?

Serber et al. 2006

Summary

- MBH traces spheroid Ebinding
 - Suggests self-regulated BH growth

If self-regulated, this feedback is potentially radically important:

- Heating gas, ejecting metals, shutting down SF
- Self-regulated decay of QSO luminosity:
 - Luminosity-dependent quasar lifetimes
 - Changes the meaning of the QLF

"Are AGN mergers?" is the wrong question: we should ask:

- "Where (as a function of L, z, d) do mergers vs. secular processes dominate the AGN population?"
 - Clustering vs. scale
 - Host galaxy colors/SFH
 - Host morphology/kinematics
 - Both "merger signatures" and e.g. disk vs. elliptical, pseudobulge vs. classical bulge

The Simulations FINALLY, WHAT TO SIMULATE?

- Span the parameter space, varying:
 - Masses & mass ratios
 - Disk gas fractions
 - Redshift of formation & merger
 - Disk structural parameters
 - Bulge-to-disk ratio, concentration, scale lengths
 - ISM Feedback/Pressurization (isothermal > full multiphase)
 - BH accretion & feedback efficiency
 - Stellar winds : add/remove
 - Mass loading, energy-loading
 - Orbital parameters
 - Disk orientations
 - Angular momentum
 - Pericentric passage

~500+ simulations and counting (Robertson et al. 2005; Cox et al. 2004)

Tuesday, December 25, 12

PFH, Richards,

Hernquist

(also:

Color Evolution of Quasar Hosts

Color Evolution of Quasar Hosts

- Quasars live in *blue spheroids*
- Need to go to next level: full stellar populations are these really post-SB?
- Examine the time/redshift dependence

Disk Instabilities/Bars

1.5

2.0

u - r

2.5

3.0

1.0

1.5

2.0

2.5

(Barazza et al. 2006)

3.0 PH07

Tuesday, December 25, 12

1.0

1.5

2.0

2.5

3.0

1.0

1.0

0.8

0.6

0.2

0.0

N (Arbitrary Units)

Blue Galaxies

..... Red Galaxies

(Strateva et al. 2001)

Where Quasars Are Born

• Small-Scale Excess:

- Predicted in merger models
 - Mergers biased to regions with *small-scale* overdensities
 - Seen in cosmological simulations (Thacker et al.)
 - Seen in merger remnants! (Goto et al.; Hogg et al.)
- *Not* expected in secular/instability, cooling flow, stellar mass loss, or other models

PFH07

The Simulations A CAUTION...

The Simulations INITIAL, IMPULSIVE FEEDBACK VS. "MAINTENANCE"

We see today...

Thanks!

Galaxy Crash

Quasar Clustering is a Strong Test of this Model MOST FAINT QSOS ARE DECAYING BRIGHT QSOS - SHOULD BE IN SIMILAR HOSTS

Tuesday, December 25, 12

Which Correlation Is "Most Fundamental"? COMPARE RESIDUALS

~3s significant residual trend with respect to ANY single variable correlation!

Which Correlation Is "Most Fundamental"? WHAT ELIMINATES THE SECONDARY VARIABLES?

- Find a FP-like correlation:
 - M_{bh} ~ M_{bul}^a s^b
 - M_{bh} ~ Re^a s^b
 - M_{bh} ~ M_{bul}^a R_e^b
- Roughly, bulge binding energy:

1.0

0.8

0.6

0.4

0.2

0.0

0

2

Ę

 $M_{bh} \sim E_{binding}^{0.7-0.8} \sim (M_{bul} s^2)^{0.7-0.8}$

M_{BH}∝ M.

Which Correlation Is "Most Fundamental"? WHAT ELIMINATES THE SECONDARY VARIABLES?

Do Feedback-Regulated Simulations Predict This? SIMPLE COUPLING OF BH RADIATED ENERGY TO SURROUNDING GAS IN A MERGER

Supports basic Silk & Rees '98 argument:

- BH feedback self-regulates growth in ~fixed potential
- only "feel" the local potential of material to be unbound

Other Fueling Mechanisms: Minor Mergers

10

left: Projected gas density right: Projected stellar density XY, the orbital plane

Isolated Disk (Sbc) Galaxy Run: execute/G3G1-u3 T.J. Cox & Patrik Jonsson, UC Santa Cruz UC Santa Cruz, 2004 10.0 10" 10* 10 Central-Satellite Minor Mergers 10⁻² 10-3 10" 10-5 104 Satellite-Satellite Major Mergers 10-2 10 10 10.4 10 11 14 12 log(M.... / h⁻¹ M.)

Central Galaxy Major Mergers (per Halo)

- Not so violent -probably don't dominate spheroid formation (LMC/SMC)
- Not very efficient: even if growth
 - ~ M_secondary/M_primary, major mergers "win"

Besla et al. (2007)

Other Fueling Mechanisms: Minor Mergers

- Minor Mergers
 - Can get to ~1-2 10^7 M_sun ::: *very* hard to push beyond this

Other Fueling Mechanisms: Minor Mergers

Other Fueling Mechanisms: Disk/Bar Instabilities

- Secular Evolution/Disk Instabilities
 - Most mass in "classical" bulges, not "pseudobulges":
 - But, *are* important below <~ Sa-types
 - Does it really solve the angular momentum problem? (Jogee et al.)

Other Fueling Mechanisms: Disk/Bar Instabilities

• Same caveats as minor mergers: don't build massive bulges: doesn't matter if you can get the gas in!

Emergent Picture:

- Seyfert-Quasar divide is a good proxy!

Emergent Picture:

- Secular/Minor mergers dominate at M_B <~ -22 to -23: (L_x <~ a few 10^43)
 - Seyfert-Quasar divide is a good proxy
 - If true: they are significant (~10-20%), but not dominant contributor to total accretion density/BH mass density

Some Basic Checks:

- Construct generic model of merger-driven quasar activity (PH et al. 2007; astro-ph/0706.1243)
 - Populate halo+subhalo MFs (from cosmological simulations) with "initial" galaxies (according to HODs/ empirical constraints)
 - Let them grow (star formation & accretion)
 - Let them merge
 - Assume major, gas-rich merger > BH/bulge
 - "Paint on" detailed simulations where necessary

Predictions

• Predicts the QLF vs. redshift, luminosity, wavelength

Predictions

- Predicts the QLF vs. redshift, luminosity, wavelength
- There are "enough" mergers!

Where Quasars Are Born

• Observed excess of quasar clustering (quasar-galaxy and quasar-quasar pairs) on small scales, relative to "normal" galaxies with the same masses/large-intermediate scale clustering

• Predicted by merger models (Thacker & Scannapieco et al., PFH)

Where Quasars Are Born

• Small-Scale Excess:

- Predicted in merger models
 - Mergers biased to regions with *small-scale* overdensities
 - Seen in cosmological simulations (Thacker et al.)
 - Seen in merger remnants! (Goto et al.; Hogg et al.)
- *Not* expected in secular/instability, cooling flow, stellar mass loss, or other models

PFH07

The Difficulty

- Quasar is at the *end* of the merger
 - Host is relaxed/tidal features fade
 - SB dimming & PSF de-convolution
 - Automated routines classify even *perfect* images as "relaxed" spheroids in the quasar phase (Lotz et al.)
 - Comparison samples?
 - Same *galaxy* masses (not luminosities)

e.g. Canalizo, Bennert et al.: PG QSO Hosts

QSO = Host

= 1.48 Gyr

The Difficulty

Red or IR-bright QSOs:

- Nearly ~100% mergers (Hutchings et al., Guyon et al., Urrutia)
- Need to prove they will turn into their bluer "cousins"

F2M0729+3336

F2M0830+3759

F2M0841+3604

F2M0825+4716

F2M0834+3506

F2M0915+2418

Uses of Color & Morphology Information

Merger efficiently exhausts gas; feedback can expel what remains
> remnant rapidly reddens

• Not true of secular evolution/pseudobulges (Kormendy, Balcells et al.)

Colors of Quasar Hosts

Color & Morphology of Quasar Hosts

Quasars live in *blue spheroids*

1.0

Blue Galaxies

- Need to go to next level: full stellar populations - are these really post-SB?
- Examine the time/redshift dependence

Morphology of Quasar Hosts

- Mergers form "classical" bulges; secular evolution forms "pseudobulges"
- Pseudobulges important only in relatively late-type galaxies; small M_bh
- Bar fraction & pseudobulge fraction ~constant to z~1-2

