Quasars, Mergers, and Spheroid Evolution

Philip Hopkins

Arizona 11/29/07

Lars Hernquist, T. J. Cox, Adam Lidz, Gordon Richards, Alison Coil, Adam Myers, Paul Martini, Volker Springel, Brant Robertson, Tiziana Di Matteo, Yuexing Li, Josh Younger

Motivation HOW DO BLACK HOLES GROW?

Black holes somehow sensitive to their host bulges:

M-sigma Relation Suggests Self-Regulated BH Growth PREVENTS RUNAWAY BLACK HOLE GROWTH

Tuesday, December 25, 12

Which Correlation Is "Most Fundamental"? COMPARE RESIDUALS

~3s significant residual trend with respect to ANY single variable correlation!

Which Correlation Is "Most Fundamental"? WHAT ELIMINATES THE SECONDARY VARIABLES?

- Find a FP-like correlation:
 - M_{bh} ~ M_{bul}^a s^b
 - M_{bh} ~ Re^a s^b
 - M_{bh} ~ M_{bul}^a R_e^b
- Roughly, bulge binding energy:

1.0

0.8

0.6

0.4

0.2

0.0

0

2

Ę

 $M_{bh} \sim E_{binding}^{0.7-0.8} \sim (M_{bul} s^2)^{0.7-0.8}$

M_{BH}∝ M.

Which Correlation Is "Most Fundamental"? WHAT ELIMINATES THE SECONDARY VARIABLES?

Do Feedback-Regulated Simulations Predict This? SIMPLE COUPLING OF BH RADIATED ENERGY TO SURROUNDING GAS IN A MERGER

Supports basic Silk & Rees '98 argument:

- BH feedback self-regulates growth in ~fixed potential
- only "feel" the local potential of material to be unbound

Three Outstanding (Inseparable?) Questions:

"Feeding the Monster" WHAT CAN BREAK DEGENERACIES IN DIFFERENT FUELING MODELS?

- If BHs trace spheroids, then *most* mass added in mergers
- Other candidates must also be:
- Fast, violent
- Blend of gas & stellar dynamics
- Why?

* Soltan (1982): bulk of SMBH mass density grown through radiatively efficient accretion in quasars

→ gas dynamics; rapid (~ few 10⁷ years)

- * Lynden-Bell (1967): orbits of stars redistributed in phase space by large, rapid potential fluctuations
 - → stellar dynamics; freefall timescale

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

(b) "Small Group"

- halo accretes similar-mass companion(s)
- can occur over a wide mass range
- Mhalo still similar to before: dynamical friction merges the subhalos efficiently

- halo & disk grow, most stars formed
- secular growth builds bars & pseudobulges
- "Seyfert" fueling (AGN with ME>-23)
- cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center:
- starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback,

1000

100

10

0.1

12

9

8

-2

logiol Lqso 10

[Mo yr-1

SFR

but, total stellar mass formed is small

C

-1

0

Time (Relative to Merger) [Gyr]

(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback - remaining dust/gas expelled
- get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

- dust removed: now a "traditional" QSO - host morphology difficult to observe: tidal features fade rapidly
- characteristically blue/young spheroid

(g) Decay/K+A

- QSO luminosity fades rapidly - tidal features visible only with very deep observations - remnant reddens rapidly (E+A/K+A) "hot halo" from feedback - sets up quasi-static cooling

Other Fueling Mechanisms: Minor Mergers

10

left: Projected gas density right: Projected stellar density XY, the orbital plane

Isolated Disk (Sbc) Galaxy Run: execute/G3G1-u3 T.J. Cox & Patrik Jonsson, UC Santa Cruz UC Santa Cruz, 2004 10.0 10" 10* 10 Central-Satellite Minor Mergers 10⁻² 10-3 10" 10-5 101 Satellite-Satellite Major Mergers 10-2 10 10 10.4 10 11 14 12 log(M.... / h⁻¹ M.)

Central Galaxy Major Mergers (per Halo)

- Minor Mergers
 - Not so violent -probably don't dominate spheroid formation (LMC/SMC)
 - Not very efficient: even if growth
 - ~ M_secondary/M_primary, major mergers "win"

Besla et al. (2007)

Other Fueling Mechanisms: Minor Mergers

- Minor Mergers
 - Can get to ~1-2 10^7 M_sun ::: *very* hard to push beyond this

Other Fueling Mechanisms: Minor Mergers

Other Fueling Mechanisms: Disk/Bar Instabilities

- Secular Evolution/Disk Instabilities
 - Most mass in "classical" bulges, not "pseudobulges":
 - But, *are* important below <~ Sa-types
 - Does it really solve the angular momentum problem? (Jogee et al.)

Other Fueling Mechanisms: Disk/Bar Instabilities

• Same caveats as minor mergers: don't build massive bulges: doesn't matter if you can get the gas in!

Emergent Picture:

- Seyfert-Quasar divide is a good proxy!

Emergent Picture:

- Secular/Minor mergers dominate at M_B <~ -22 to -23: (L_x <~ a few 10^43)
 - Seyfert-Quasar divide is a good proxy
 - If true: they are significant (~10-20%), but not dominant contributor to total accretion density/BH mass density

Some Basic Checks:

- Construct generic model of merger-driven quasar activity (PH et al. 2007; astro-ph/0706.1243)
 - Populate halo+subhalo MFs (from cosmological simulations) with "initial" galaxies (according to HODs/ empirical constraints)
 - Let them grow (star formation & accretion)
 - Let them merge
 - Assume major, gas-rich merger > BH/bulge
 - "Paint on" detailed simulations where necessary

Predictions

• Predicts the QLF vs. redshift, luminosity, wavelength

Predictions

- Predicts the QLF vs. redshift, luminosity, wavelength
- There are "enough" mergers!

Where Quasars Are Born

• Observed excess of quasar clustering (quasar-galaxy and quasar-quasar pairs) on small scales, relative to "normal" galaxies with the same masses/large-intermediate scale clustering

• Predicted by merger models (Thacker & Scannapieco et al., PFH)

Where Quasars Are Born

• Small-Scale Excess:

- Predicted in merger models
 - Mergers biased to regions with *small-scale* overdensities
 - Seen in cosmological simulations (Thacker et al.)
 - Seen in merger remnants! (Goto et al.; Hogg et al.)
- *Not* expected in secular/instability, cooling flow, stellar mass loss, or other models

PFH07

Where Quasars Are Born

- Small-Scale Excess:
 - Not seen in Seyferts:
 - Suggests different processes dominate fueling below M_B ~ -23 (M_bh ~ 10^7)?

Serber et al. 2006

The Difficulty

- Quasar is at the *end* of the merger
 - Host is relaxed/tidal features fade
 - SB dimming & PSF de-convolution
 - Automated routines classify even *perfect* images as "relaxed" spheroids in the quasar phase (Lotz et al.)
 - Comparison samples?
 - Same *galaxy* masses (not luminosities)

e.g. Canalizo, Bennert et al.: PG QSO Hosts

QSO = Host

The Difficulty

Red or IR-bright QSOs:

- Nearly ~100% mergers (Hutchings et al., Guyon et al., Urrutia)
- Need to prove they will turn into their bluer "cousins"

F2M0729+3336

F2M0830+3759

F2M0841+3604

F2M0825+4716

F2M0834+3506

F2M0915+2418

Uses of Color & Morphology Information

Merger efficiently exhausts gas; feedback can expel what remains
> remnant rapidly reddens

• Not true of secular evolution/pseudobulges (Kormendy, Balcells et al.)

Colors of Quasar Hosts

Color & Morphology of Quasar Hosts

• Quasars live in *blue spheroids*

1.0

Blue Galaxies

- Need to go to next level: full stellar populations are these really post-SB?
- Examine the time/redshift dependence

Disk Instabilities/Bars

Morphology of Quasar Hosts

- Mergers form "classical" bulges; secular evolution forms "pseudobulges"
- Pseudobulges important only in relatively late-type galaxies; small M_bh
- Bar fraction & pseudobulge fraction ~constant to z~1-2

Summary

- M_BH traces spheroid E_binding
 - Further suggests self-regulated BH growth
- In feedback-regulated growth models, getting fuel to the BH is the easy part
 - Need to *build up the central potential* or the BH will just blow out any new gas

"Are AGN mergers?" is the wrong question: we should ask:

- Where (as a function of L, z, d) do mergers vs. secular processes dominate the AGN population?"
 - Clustering vs. scale
 - Host galaxy colors/SFH
 - Host morphology/kinematics
 - Both "merger signatures" and e.g. disk vs. elliptical, pseudobulge vs. classical bulge