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Motivation
HOW DID WE GET TO GALAXIES TODAY?
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Structure grows hierarchically:
must understand mergers
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Motivation
HOW DID WE GET TO GALAXIES TODAY?

Dark matter halos collapse:
gas cools into a disk

protogalactic cloud with more angular momentum ——— o . gpiral galaxy

What happens when that starts colliding into other galaxies?
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Our Conventional Wisdom (Toomre): T

F. Summers

Tuesday, December 25, 12



Our Conventional Wisdom (Toomre): T

Major mergers destroy disks . a
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Our Conventional Wisdom (Toomre): T

Major mergers destroy disks i ] a
Minor mergers make thick disk | v i L
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Our Conventional Wisdom (Toomre): T

Major mergers destroy disks

Minor mergers make thick disk | v i L
Remnant has an r'/4 law profile -l
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Our Conventional Wisdom (Toomre):

Major mergers destroy disks
Minor mergers make thick disk
Remnant has an r'#4 law profile

Remnant size/metallicity/shape retains
“memory” of disk “initial conditions”

F. Summers
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Motivation
HOW DID WE GET TO GALAXIES TODAY?

Many of these are *problems*...
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Stellar disk-disk merger remnants don’t look like bulges!
-- sizes too large
-- profiles too flat
-- shapes too flattened
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T= 0Myr Gas
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T= 0Myr Gas

\

Tidal torques = large, rapid gas inflows (e.g. Barnes & Hernquist 1991)
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T= 0Myr Gas

Tuesday, December 25, 12




T= 0Myr Gas

\

Triggers Starbursts (e.g. Mihos & Hernquist 1996)
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T= 0Myr Gas
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T= 0Myr Gas

\

Fuels Rapid BH Growth (e.g. D1 Matteo et al., PFH et al. 2005)
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T= 0Myr Gas
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T= 0Myr Gas

\

Feedback expels remaining gas, shutting down growth (more later...)
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T= 0Myr Gas
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T= 0Myr Gas

\

Merging stellar disks grow spheroid
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T= 0Myr Gas
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What About the Gas that Does Lose Angular Momentum?
CAN WE MAKE A REAL ELLIPTICAL?
Borne et al., 2000

Funneled to the center
—» Mmassive
starbursts

Locally, all massive
starbursts (> 100 M/

yr) are late-stage mergers

Observe Compact Gas:
~1010 Mgun on <kpc scales

Are they the progenitors of ellipticals?
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What About the Gas that Does Lose Angular Momentum?
CAN WE MAKE A REAL ELLIPTICAL?  More Gas (f,.)

>

—» Mmassive
starbursts

Locally, all massive
starbursts (> 100 M/

yr) are late-stage mergers

Observe Compact Gas:
~1010 Mgun on <kpc scales

More Bulge (B/T)
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What About the Gas that Does Lose Angular Momentum?
CAN WE MAKE A REAL ELLIPTICAL?

New Work by

D. Narayanan,
C. Hayward,
P. Jonsson

SUNRISE code:

3-d, adaptive mesh (post-process)

Monte Carlo radiative transfer

sub-grid model for ISM clouds

dust radiative equilibrium

line transfer (polychromatic)

Mappings/CLOUDY model for
stellar birth clouds/PDRs
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What About the Gas that Does Lose Angular Momentum?
CAN WE MAKE A REAL ELLIPTICAL?
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What About the Gas that Does Lose Angular Momentum?

CAN WE MAKE A REAL ELLIPTICAL?

------------------------------------------------
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What About the Gas that Does Lose Angular Momentum?

CAN WE MAKE A REAL ELLIPTICAL?

3-d, adaptive mesh (post-proces:

Monte Carlo radiative transfer

sub-grid model for ISM clouds

dust radiative equilibrium
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What About the Gas that Does Lose Angular Momentum?

CAN WE MAKE A REAL ELLIPTICAL?
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What About the Gas that Does Lose Angular Momentum?
STARBURSTS: ON THEIR WAY TO ELLIPTICALS?

Not just at z=0, but in high-redshift sub-millimeter galaxies
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So What Difterence Does this
Starburst Make?
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The Problem: The Fundamental
Plane & Bulge Densities:

Stellar R, [kpc]

heroid
Why are ellipticals smaller than disks? n Spheroids

106 108 110 112 114 116
log[ M. / Mg]

Gas | Stars Gas Dissipation
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The Problem

FUNDAMENTAL PLANE CORRELATIONS & THE DENSITY OF ELLIPTICALS

Increased dissipation—>smaller, more compact
remnants (Cox; Khochfar; Naab; Robertson)

PFH, Cox et al. 2008
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Bulge mass fraction formed in bursts
(versus violently relaxed from disks)
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The Problem
FUNDAMENTAL PLANE CORRELATIONS & THE DENSITY OF ELLIPTICALS

Increased dissipation—>smaller, more compact
remnants (Cox; Khochfar; Naab; Robertson)
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“Compact” Ellipticals?
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Compare: massive spheroids
at z=2 to those today

... VS gas-rich merger with later
low-density/minor mergers
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Starburst Stars in Simulations Leave an “Imprint” on the Profile
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Mihos & Hernquist 1994

Merger remnant elliptical profiles
should be fundamentally
two-component:

£
g G P _starburst/Disk
| (dissipationless, violently
o | relaxed)
Starburst

(dissipational, no strong
violent relaxation)

e(1/4)
Not observed at the time:

“Can the merger hypothesis be reconciled with the lack of dense stellar cores in most normal
ellipticals?” (MH94)
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Starburst Stars in Simulations Leave an “Imprint” on the Profile
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS

Since then...

Excess/Starburst Relic
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“Normal and low-luminosity ellipticals... in fact, have extra, not missing light at at small radii
with respect to the inward extrapolation of their outer Sersic profiles.”
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Application: Merger Remnants
RECOVERING THE ROLE OF GAS

PFH & Rothberg et al. 2008
PFH, Kormendy, & Lauer et al. 2008

Apply this to a well-studied sample of local merger remnants & ellipticals:
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Application: Merger Remnants
RECOVERING THE ROLE OF GAS

PFH & Rothberg et al. 2008
PFH, Kormendy, & Lauer et al. 2008

Apply this to a well-studied sample of local merger remnants & ellipticals:
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Application: Merger Remnants PFH & Rothberg et al. 2008
RECOVERING THE ROLE OF GAS PFH, Kormendy, & Lauer et al. 2008

Apply this to a well-studied sample of local merger remnants & ellipticals:
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Structure in Elliptical Light Profiles PFH & Rothberg et al. 2008
RECOVERING THE GASEOUS HISTORY OF ELLIPTICALS PFH, Kormendy, & Lauer et al. 2008

Starburst gas mass needed to
match observed profile (or
fitted to profile shape):

fstarburst

- Observed Disk
Gas Fractions:
o 2=0

0 O
- 0 0
@ O
9.0 95 10.0 105 110 g b 120 9.0 95 100 105 110 ¢ b R 120
log( M, / Mg) log( M, / My)

You can and do get realistic ellipticals given the observed
amount of gas in progenitor disks

Independent checks: stellar populations (younger burst mass);
metallicity/color/age gradients; isophotal shapes; kinematics;
recent merger remnants; enrichment patterns
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Structure in Elliptical Light Profiles PFH, Cox, & Hernquist 2008
EXPLAINS THE “TILT” IN THE FP RELATIONS

T
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?
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What else can we learn from the ‘relics’ of gas dissipation?
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Re-construct SFR(t) for each burst :

SFR (Total) [Mgyr']

04'{ - -- ﬁ?g:?éd (Two-Sided) B
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Recover the IR LF of dissipational starbursts!

Re-constructed burst LF

PFH & Hernquist 20
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PFH & Hernquist 20

Bursts always dominate at high L, but the threshold shifts

Re-constructed burst LF
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PFH & Hernquist 20

Bursts never dominate the SFR density!

O
(&)
i

i i HHO I -
. = ] f - 3
B ) 1 N I ) ‘,' .
9.0 = = ‘P—%—@—é—o—g" 1.0
i . T T 3 i —%—4»—4‘; I o) o? —
— 5 - T e N N _ -1 50?0
o 8.5 ¥|| i LEEF— Observed: ; o
8— L T LR = O-&Otal Induced i =
> - T e h— o vMerger-inauced: —4-2.07
® 8.0 - 3 : +—I—+ m Brinchmann et al. 1998 B =
— - N1 % Bell et al. 2005 g ®
— i A Jogee et al. 2009 : =
~ 75 L e Robaina et al. 2009 —=-2.5—
= r ) i
Q. - - 5_)
S 700 (~5-10% of total SFR) 130&
O - - n ~—
ke, - . o
- : 9
6.5 —+-3.5
Bursts _
B.0 [ - -4.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Tuesday, December 25, 12



Why Is There Not Much More Efficient
Gas Consumption at High Redshifts?
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How Good Is Our Conventional Wisdom?

GaS'RICh (fgas ind 01)

Gas-Richer (fgas ~ 0.4)

stars gas
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Major Merger Remnants
DO MERGERS DESTROY DISKS?

Bulge (B/T =0.2) Stellar Disk Gas Disk

- ’

T

z [kpc]

| ARAS ARAS |

200
100
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The Unsolved Questions
HOW CAN A DISK SURVIVE?

Stellar disks are collisionless: they violently relax when they collide

Can’t “cool” into a new disk
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The Unsolved Questions
HOW CAN A DISK SURVIVE?

Gas, however, is collisional (will cool into new disk): only goes
to center and bursts if angular momentum is removed

alllll> - < -

Governato et al.
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How Do Disks Survive Mergers? PFH et al. 2008

companions -- bars -- gas/star offset -- torques --
gas inflow (see, e.g., Barnes 92, Barnes & Hernquist 96, Mihos &
W LI B BN R B B Hernquist94,96)

i | ; stars
: ; (color)

gas
(contours)

What does the torquing?
Stars in the same galaxy
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How Do Disks Survive Mergers?

Torque on gas:
t ~ G Mstellar distortion / dr

For the same merger/perturbation:
Msteliar distortion X Msteliar O<(1 - fgas)

PFH et al. 2008 (“How Do Disks Survive Mergers?”)

Burst mass vs. fgas

Mass

Starburst

Fractionf,,

0671
: All Gas Bursted (1., =1...)
0.5 Predicted (Linear/Mestel Disk)
0.4 Predicted (Numerical JiSens ' .
; Exponental Disk)
0.3
0.2 .
: Y 20
0.1} L
/ . Orbit e 7
0.1 0.2 0.3 04 0.5 06
0.6 -
05! R
(all gas bursts) e
0.4! e .
0.3/ gt . N
: S L A
0 2 A /
0.1} 2
/ . . Orbitk
0.1 02 03 04 0.5 0.6
06F S
£ Initial (-2 Gyr Pre-Merger) Gas Fraction: :
05F  e01 «06 - >
; 02 o038 :
0.4 » 04 e 10
03! *

0.1 0.2 03 04
Immediate Pre-Merger Gas Fraction f__,

(gas-dependent
prediction)
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Why Do We Care? PFH & Somerville et al. 200
HOW DISK SURVIVAL IN MERGERS IS IMPORTANT

Fold this into a cosmological model: why do we care?

1.0 _ﬁn,.y_I.‘Y .-,”, T 1.0
: ' * Relic B/T after a major
0.8 ¥ T Z=2 0.8 merger with these gas
‘ . I 1= fractions
T O
0.6 o i % 0.6
% { | s |
4] R | (2 0.4
el I, 1= %
0.2f A N T @ 0.2
| Erbetal - = i
0.0 L bdid (SR SR WWRRRETEEE e - 0.0 r L33 Laia
8 9 10 11 12 8 9 10 11 12
log( M, / M) log( M, / M)

Low-mass galaxies have high gas fractions: less B/T for the same mergers
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Why Do We Care?
HOW DISK SURVIVAL IN MERGERS IS IMPORTANT

1.00 1.0
? | » - - u=10
e -=== u=03
0.8 \ ' ‘ Z=2 ~ 0.8 u=0.1
06| fl - - 0.6
- | =
. N\ 5
0.4 J | g 0.4
? LR} -] = e i
0.2 SE7 5l @ 0.2 s 7"
! s s
0.0! Y| A e : e _
8 4 10 11 12 8 9 10 11 12 -r--Kravtsov et al
log( M, / M) log( M., / M)
T LA |
1.0:‘ ! _:
Z i
|
=~ 08+ %
o B 1
A [~ 7 g - -1
S 5o A J
|
— 06 —
— < ; |
— g~ |
& |
%0 ]
§ 04+ -
=] ]
= | 1
G 9o prediction 2]
i . ) 1
including 1
A effects of gas -
0.0, ) R0 fg— gy -] PO T PR T L gol
PFH & Somerville et al. 2009 8.0 9.5 10.0 10.5 11.0 11.5 12.0
log{ M, / M)
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Have burst predictions -- why not use them?

PFH, Younger et al. 20

All SF in Merglng Systems # All SF Induced by Mergers
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Have burst predictions -- why not use them? PFH, Younger et al. 20

All SF in Merglng Systems # All SF Induced by Mergers
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Have burst predictions -- why not use them?

PFH, Younger et al. 20

All SF in Merglng Systems # All SF Induced by Mergers
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With all this gas getting to the center of the
galaxy, what 1s the black hole doing?
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Black Holes are Tightly Coupled to Bulge Properties...

10°

10°

10

10°

60 80 100 200 300 400

BHs andBnges
Co-evolve

Gultekin, Nukers et al.
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Implications for Fueling: “Feeding the Monster”
WHAT CAN BREAK DEGENERACIES IN FUELING MODELS?

Galaxy merger: good way to
get lots of gas to small scales!

If BHs trace spheroids, then
*most™® mass added in violent

events that also build bulges

"AE R

-

Quasar Host Galaxies HST « WFPC2

PRC96-35a + ST Scl OPO * November 19, 1966
J. Bahcall (Institute for Advanced Study), M. Disney (University of Wales) and NASA
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Implications for Fueling: “Feeding the Monster”
WHAT CAN BREAK DEGENERACIES IN FUELING MODELS?

Problem:
Scale of merger: ~100 kpc
Viscous disk: ~0.1 pc

Solution 1: simple prescription

Solution 2: re-simulate
(““zoom 1n”’) and see what
happens!

"AE R

-

Quasar Host Galaxies HST « WFPC2

PRC96-35a + ST Scl OPO * November 19, 1966
J. Bahcall (Institute for Advanced Study), M. Disney (University of Wales) and NASA
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T= 0 Myr Gas

\
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T= 0 Myr Gas

\

Tidal torques = large, rapid gas inflows (e.g. Barnes & Hernquist 1991)
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T= 0 Myr Gas

\
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T= 0 Myr Gas

\

Triggers Starbursts (e.g. Mihos & Hernquist 1996)
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T= 0 Myr Gas

\
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T= 0 Myr Gas

\

Fuels Rapid BH Growth?
(e.g. Di Matteo et al., PFH et al. 2005)
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T= 0 Myr Gas

\
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T= 0 Myr Gas

\

Large-scale simulation:

follow gas to sub-kpc scales
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T= 0 Myr Gas

\
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T= 0 Myr Gas

\
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T= 0 Myr Gas

\
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T= 0 Myr Gas

\
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T= 0 Myr Gas

\
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M-sigma is NOT the simplest expectation!

1010 ey ———r—rrrrry vy /2
109 Scatter in the mass iHaring -
that "gets down o |
| to” MgH . |
= 109} | 's
= 14 Scatter in Men —zé |
6 | BHs must
10 somehow
| self-requlate
b
10% 109 1010 10!l 10'* 10!
Mbulge [MO
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Simplest Idea:
FEEDBACK ENERGY/MOMENTUM BALANCE (SILK & REES ‘98)

* Accretion disk radiates:
L =e¢, (dMgyp/dt)c® (e ~ 0.1)
* Total energy radiated (typical ~108 Mgun system)

~ 0.1 Mgy ¢ ~ 10" ergs

* Compare to gravitational binding energy of galaxy:

~ Mya 0 ~ (10" Mgyy) (200 km/s)? ~ 10°Y erg

* If only a few percent of the luminous energy coupled, it would unbind the baryons!

* Turn this around: if some fraction f ~ 1-5% of the luminosity can couple, then
accretion stops when

Mgy ~ (1/fe;) Mga1 (0/¢)? ~ 0.002 My,
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M-sigma Relation Suggests Self-Regulated BH Growth

PREVENTS RUNAWAY BLACK HOLE GROWTH

10°¢ Black hole growth
- T T T L B B | T T T T - .
= e = without feedback
B 500 k 1 i
e 1 10
'.n 400 -
9 ] ] ]| ;
Ll E 3= with
- > 200f i q - feedback
P
g % 100 g 10
100 200 300 400 500
§ 108 = o (km s=') -
- = =
O - m
T E ] 107 & | | T e Al
v 3 ) 0.0 0.5 1.0 1.5 2.0 2.4
K= - I [Gyr]
z 'O F =
= =
6 i ,,"/ * --- 807% gas
10 3 / ... 40% gas
E — 207% gas
~Di Matteo et al. 2005
L L 1 T 1 1
30 60 100 300 T

o (km s™)
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Observations & Simulations Suggest this Simple Picture Works
MAKES UNIQUE PREDICTIONS:
What is the “fundamental” correlation? Msn-Ebinding : BH “fundamental plane” (PFH et al.)
Different correlation for “classical” and “pseudobulges”
Both tentatively observed (Aller & Richstone; Greene et al.; Hu; Gadotti et al.)

1 09 L T T L] T T T ] L T T -
r— -4
E g
e
108 E >
;
F |
; 20 100 150 200 250 300
‘ g (km s7%) i
(O I
=
o v? | o
g 10} merger -
= i remnants
'
L secular/
L stochastically-fueled
6 galaxies
N 6 il — =
e
.
F ]
L |
l
iB L | | Younger, PFH et al. 2008

100
o (km s™')

Basic argument:
- BH feedback self-regulates growth in ~fixed potential
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Of Course, Not Every AGN Needs a Merger
MORE QUIESCENT GROWTH MODES?

o Seyfert: only 1078 Mgun ~ GMC
e Minor mergers?

e Secular instabilities/bars?

1 010 '
& f9= 0.4 )
f,=0.6 } minor mergers :
ef =08
1 09 93 AA ‘ :
aey Dubinski

s
4

e

..4
i AN
e/l
.

) O .

o)
- major
3 MErgers - o f you don’t build massive bulges,

doesn’t matter if you
can get the gas in!

Younger et al. 2008

2 2 =2
Mbulgeo (MO km® s )
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gue-iaction 20%

“Dead” Bulges “Seyferts” “Fading” Mergers
(stellar wind/hot (dlSk'domlf‘ated’ (post-starburst
gas halo accretion) secular/minor spheroids)
mergers)

T =193 Gyr

wyu-guor 0.250

> E

g -2[

P

= I

-E 4 s Seyferts Quasars “Blowout™
% i ! : (Bright
g I Mergers)
q -

8 10 12 14

Log(L/L

sun)

Observed luminosity function: populations at different evolutionary stages
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Where Does the Energy/Momentum Go?

T=0.4 Gyr/h T=0.5Gyr/h

-
P L T R e

AAW

30 kpc/h

Loy

#l Compare: stellar winds over long timescales
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Where Does the Energy/Momentum Go?
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Where Does the Energy/Momentum Go?
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Where Does the Energy/Momentum Go?
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Quasar Outflows May Be Significant for the ICM & IGM
SHUT DOWN COOLING FOR ~ COUPLE GYR. PRE-HEATING?

Gas Density Gas Temperature

Tuesday, December 25, 12



Quasar Outflows May Be Significant for the ICM & IGM
SHUT DOWN COOLING FOR ~ COUPLE GYR. PRE-HEATING?

Entropy (keV cm®)

100 ¢

10|

Tuesday, December 25, 12

_ v 10° Donahue+ 06 |
i y _ ' Pratt & Arnaud
| with AGN .AL. 10°
feedback o D .
[ - - Lj TR
33 ‘ "BG de) s _} g 10
. O ] o’ %
gt < 10%
[s) ) !
@ Ar TN
- without AGN feedback e SImu ated vs. observe
L . ol profiles
10 100 10
radius (kpc) 1 10 100 1000 10000
r [kpc]
3 $°8dide °;§ii';:‘$- .:.::‘.::.-°..
1-0 . ".. :: ..f. i! E.T, .. = | o
N(li) ? ... - « W '3:'.‘ e ° '“....-
o oo Toeee R O h( 1.8 "oy
N © ..........o o... :‘..I.:.. >
0.1 ol T2
Donahue+ 06 e L :- o
< ;Vckhhnm+ Qb . . '0 = 0 )
10 100 1000
r [kpc]




Expulsion of Gas Turns off Star Formation
ENSURES ELLIPTICALS ARE SUFFICIENTLY “RED & DEAD”?

| L ! el =B~ 0z M <0 1 I 17 T 1 ] r 11 I I | IR . BRI . A | LI | I w 5 h R 3

Springel et al. 2005 |

1000 |

| TTTT”l
j==i lllllll

100
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T TTTTI]
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|
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10:_ ~~"\‘...__“‘..~p“ _E
B With AGN i
Feedback
1 = =
P—l | 1 1 1 1 | 1 1 l 1 )| 1 1 1 1 | 1 l 1 | 1 1 1 1 )| | 1 l 1 1 1 1 1
0 1 2 3
T [ Gyr]
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BUT, This 1s Not the Only Possibility!
EXPERIMENTS WITH RADIATION PRESSURE

Problem: Cooling times at densities near BH ~ 0

BUT, photons have an irreducible momentum

Dust in host absorbs radiation

s
b rad — T —
C

Set equal to Fgravity, get a
galaxy-scale Eddington limit:

4 fgas o’ ¢

G

anx ~
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Why Not Just Couple the Momentum Directly?
EXPERIMENTS WITH RADIATION PRESSURE

* New simulations in DeBuhr et al. 2009: add feedback force from radiation:

Frad:T_

I 7 ~ 10

C

1 . I ’ I

. (BHs 1
~ Eddl.f_\g_tf)_r! ------- |"S‘Merge): |

.....
-
"

—4

B
R
R

-4
-

Is.
=
-
" - 0.1
s first
close
[ passage mf:;::zr
0.01 A
0 0.5 1 1.5 2

Radial momentum flux
Couple to nearest ~500-2000 particles

* Get self-regulated
BH growth!
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* BH growth
self-regulates on
~kpc scales,
but with no galaxy
scale “blowout”!

* Depending on FB
& accretion rate
couplings, can
simply “hold up”
the gas at
intermediate scales
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Q. Despite this, can we say some global things
about AGN feedback and galaxies?
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Q. Despite this, can we say some global things
about AGN feedback and galaxies?

A. Yes.
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Q. Despite this, can we say some global things
about AGN feedback and galaxies?

A.Yes. 1Think.
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AGN or Starburst-Driven Winds?
WHICH ARE MORE IMPORTANT?

1. Even with the most optimistic assumptions,
stellar FB dominates over AGN FB 1n
star-forming, disk-dominated galaxies

Total Eagn ~ ESupernovae for a
bulge-dominated galaxy.

But the Eagn comes 1n a very short burst
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) ) PFH, Cox et al. 2007
AGN or Starburst-Driven Winds?
WHICH ARE MORE IMPORTANT?

1 0=
" BHs
§ Dominate
E Feedback
eOU)
G O
o -
@ -
) ;
Stars
10~ ) Dominate
prsougen (s ix guweng i Pioeses d Feedback
1011 1012 1013 1014

Halo Mass [Msun]
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) ) PFH, Cox et al. 2007
AGN or Starburst-Driven Winds?
WHICH ARE MORE IMPORTANT?

. Efficient star Inefficient star )
10 formation formation :
- —a~=° 1 |BHs
§ Dominate
E Feedback
eofl)
B
T
m
eo
Stars
10" ) Dominate
cdBIPT o pesosgss (2 ol SuoneGey e 9 Yoesuers Feedback
10!1 1012 1013 10!4

Halo Mass [Msun]
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PFH, Cox et al. 2007
AGN or Starburst-Driven Winds?

WHICH ARE MORE IMPORTANT?

Efficient star Inefficient star q
10° formation formation E
. ] |BHs
5 1 | Dominate
5 10 3 Feedback
e’
\ .
3w
3 Stars
o ) Dominate
: ekl o ue - 3 v § Feedback

1011 1012 10!3 10!4
Halo Mass [Msun] How is this inefficient star
formation *maintained*?
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Quasar or Radio-Mode Feedback?
WHAT DOES ONE OR THE OTHER DO?

2. Quasar-mode feedback will not solve the
cooling-flow problem

Clusters with cooling flows do not have quasars!

- Pre-heated, but
10°-  will develop
- cooling flows

1 5» T T T Y v a1 I
E .
I e
od ety
2] ¥, v
o we o f -
- y/ -y
. s

Even optimistic models

—
2
cannot halt ~10 Gyr of §'0 ™erv'®
future cooling = 10%;
10" Ll
1 f
1 10 100 1000 10000
r [kpc]
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“Transition” VS. “Maintenance”

Move mass from Blue to Red Keep it Red

Rapid Long-lived (~Hubble time)
Small scales Large (~halo) scales
“Quasar’ mode (high mdot) “‘Radio” mode (low mdot)
Morphological Transformation Subtle morphological change
Gas-rich/Dissipational Mergers Hot Halos & Dry Mergers

dt ~ 1010 yr

Proga et al.

Sijacki et al.

Reqgulates Black Hole Mass Regulates Galaxy Mass
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Summary

Ellipticals are smaller than spirals! How do we make a real elliptical?

Gas! Dissipation builds central mass densities, explains observed scaling laws:
just need disks as gas rich as observed (fgas ~ 0.1 - 0.5)

Explains compact z~2 galaxy and SMG sizes: Inside-out formation via mergers

How do disks survive mergers? (How do we avoid making all ellipticals?)

Gas! No stars = No angular momentum loss

Particularly important at high-z

Drives the starburst history of the Universe...
but not always as you’d expect

Don’t forget about black holes and AGN!
M-sigma implies BHs formed in mergers?
Implies feedback: quasar-mode vs. radio-mode
Non-trivial AGN lifetimes & lightcurves

Can understanding the structure and scalings
of galaxies be reduced to understanding
their gas-consumption histories?
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