Star Formation, Black Holes, and Feedback in Galaxy Formation

Philip Hopkins

Eliot Quataert, Norm Murray, Lars Hernquist, Dusan Keres, Todd Thompson, Desika Narayanan, Dan Kasen, T. J. Cox, Chris Hayward, Kevin Bundy, & more

Overview

- > (1) The Problem
- > (2) Stellar Feedback & Consequences
 - **Isolated Galaxies & the ISM**
 - > Interacting Galaxies & Mergers
 - >High-Redshift Galaxies & the IGM
- > (3) AGN Feedback in Massive Galaxies

Motivation HOW DID WE GET TO GALAXIES TODAY?

Dark matter halos collapse: gas cools into a disk

What happens once gas is actually inside galaxies?

The Problem: Baryons

Moster 2009

Moster 2009

Stellar Feedback is (a/the) Key to Galaxy Formation! SO WHAT'S THE PROBLEM?

 Standard (in Galaxy Formation):
 Couple SNe energy as "heating"/thermal energy

FAILS:

$$t_{\rm cool} \sim 4000 \,\mathrm{yr} \left(\frac{n}{\rm cm^{-3}}\right)^{-1}$$
$$t_{\rm dyn} \sim 10^8 \,\mathrm{yr} \left(\frac{n}{\rm cm^{-3}}\right)^{-1/2}$$

 High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- Heating (no cheating!):
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- Heating (no cheating!):
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)
- *Explicit* Momentum Flux:
 - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

> SNe

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

Stellar Winds

$$\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$$

Spiral Galaxy M101 Spitzer Space Telescope • Hubble Space NASA / JPL-Caltech / ESA / CXC / STScl

Hopkins, Quataert, & Murray, 2011

Hopkins, Quataert, & Murray, 2011

Stellar Feedback gives Self-Regulated Star Formation

Stellar Feedback gives Self-Regulated Star Formation

Stellar Feedback gives Self-Regulated Star Formation

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

 \gg Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} v_{\rm turb}}{t_{\rm crossing}}$$

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:

$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:

$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

 $\dot{P}_* \sim \dot{P}_{\rm diss}$

Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

$$\dot{P}_* \sim \dot{P}_{\text{diss}}$$

 $\dot{P}_* \sim \text{few} \times \frac{L}{c} \sim \epsilon_* \dot{M}_* c$

•

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma\Omega}{\pi G\Sigma}$$

$$\dot{P}_* \sim \dot{P}_{\rm diss}$$

$$\dot{P}_* \sim few \times \frac{L}{c} \sim \epsilon_* \, \dot{M}_* \, c$$

$$\longrightarrow \dot{\Sigma}_* \sim \left(\frac{\sigma}{\epsilon_* c}\right) \, \Sigma_{\rm gas} \Omega \sim 0.02 \, \Sigma_{\rm gas} \Omega$$

Global Star Formation Rates are INDEPENDENT of High-Density SF Law

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008

Global Star Formation Rates are INDEPENDENT of High-Density SF Law

• Set by feedback (i.e. SFR) needed to maintain marginal stability

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008
What Else Can We Study About Star Formation and the ISM?

Properties of GMCs DEPENDENCE ON FEEDBACK AND OTHER SCALINGS

Properties of GMCs & Gas "Clumps"

SMC

Feedback is Reflected in Dense Gas TRACERS OF STAR FORMATION EFFICIENCY

The Gas not Forming Stars: Galaxy Winds and the Baryon Cycle

Gas

How Efficient Are Galactic Super-Winds?

How Efficient Are Galactic Super-Winds?

What Happens when Galaxies Interact?

Our Conventional Wisdom (Toomre):

F. Summers

Our Conventional Wisdom (Toomre):

Major mergers destroy disks

F. Summers

Our Conventional Wisdom (Toomre):

Major mergers destroy disks

Remnant size/metallicity/shape retains "memory" of disk "initial conditions"

Our Conventional Wisdom...

Stellar disk-disk merger remnants don't look like bulges!

- -- sizes too large
- -- profiles too flat
- -- shapes too flattened

Milky Way (~5% Gas) Merger

0.0 Gyr

Stars

10 kpc

Starburst Galaxy (Gas-Rich) Merger

0.1 Gyr

Stars

10 kpc

Galaxy Mergers LABORATORY FOR STUDYING EXTREME CONDITIONS

- Fraction of star formation in mergers
- Effects on galaxy:
 - Sizes
 - **Kinematics**
 - Structure
- Star formation in starbursts and tidal shocks
- Super-winds:

PFH, Kormendy & Lauer et al.

Galaxy Mergers LABORATORY FOR STUDYING EXTREME CONDITIONS

Galaxy Mergers LABORATORY FOR STUDYING EXTREME CONDITIONS

Disks can Survive & Re-Form After Mergers NOT AS FRAGILE AS WE THOUGHT!

High Redshifts & The Inflow/Outflow Cycle

Cosmological Simulations "ZOOM-IN" ON THE FORMATION OF A MASSIVE GALAXY

Cosmological Simulations "ZOOM-IN" ON THE FORMATION OF A MASSIVE GALAXY

Proto-MW: Gas Temperature:

Insert Winds "By Hand" (Sub-Grid)	Following Full Feedback

PFH & Keres et al

Should Galaxy Formation be Inefficient? HOW DO THESE WINDS CHANGE OUR PICTURE?

Should Galaxy Formation be Inefficient? HOW DO THESE WINDS CHANGE OUR PICTURE?

What About High-Mass Galaxies?

Why Do We Need AGN Feedback?

Removing/heating gas in groups

Why Do We Need AGN Feedback?

- Lowering mass of >M* galaxies
- Removing/heating gas in groups

Quasar Outflows: Heating Halo Gas SHUT DOWN COOLING AND/OR "SET UP" RADIO MODE

Molecular Outflows in AGN & ULIRGs OBSERVED WINDS at >1000 km/s

Rupke & Veilleux 2005,2011 Fischer et al. 2010 (Mrk 231) Feruglio et al. 2010 (Mrk 231) Alatalo et al. 2011 (NGC 1266)

Where to Now? How Do We Model This?
Step 1: Stellar Feedback & the ISM

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- Heating:
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)
- *Explicit* Momentum Flux:
 - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

> SNe

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

Stellar Winds

$$\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$$

Step 2: Inflow

Tuesday, December 25, 12

Step 2: Inflow

Tuesday, December 25, 12

• Gravity dominates torques from 0.1 - 10,000 pc:

• Gravity dominates torques from 0.1 - 10,000 pc:

Step 3: Observed Sources of AGN Feedback

• Jets

• heat IGM/ICM (low-density), but not dense ISM

Step 3: Observed Sources of AGN Feedback

- Jets
 - heat IGM/ICM (low-density), but not dense ISM
- Radiation Pressure
 - L_{AGN} >> L_{stars}

Step 3: Observed Sources of AGN Feedback

- Jets
 - heat IGM/ICM (low-density), but not dense ISM
- Radiation Pressure
 - $L_{AGN} >> L_{stars}$
- Accretion Disk Winds
 - Broad Absorption Line Winds 3

BAL Winds on ~1pc - 1kpc scales:

PFH in prep Wada et al.

 $v_{\rm launch}(0.1\,{\rm pc}) = 10,000\,{\rm km/s}$

Tuesday, December 25, 12

Summary:

Star formation is Feedback-Regulated: independent of small-scale SF 'law'

- Need 'enough' stars to offset dissipation (set by gravity)
- Leads to Kennicutt relation & super-winds:
- Different mechanisms dominate different regimes:
 - High densities: radiation pressure
 - Intermediate: HII heating, stellar wind momentum
 - Low densities: SNe & stellar wind shock-heating
 - No one mechanism works
- Mergers: Laboratory for extreme conditions (>100 times GMC densities!)
 - Efficient disk survival
 - > Super-winds with $\sim 10-500 \text{ M}_{\text{sun}}/\text{yr}$
- Cosmologically: Not just a top-down, inflow cycle:
 - Winds determine IGM enrichment, temperature, even subsequent inflow structure

Can't Quench Without "AGN" Feedback!

Quasar BAL Winds+Radiation Pressure+Jets: Explain M_{BH}-S, and WILL suppress SFRs