0.0 Gyr

Stars 0.1 Gyr

Stars

10 kpc

Milky Way

10 kpc

Starburst Disks

The Structure of the Interstellar Medium: Turbulence, Gravity, & Feedback

0.1 Gyr

Stars

Gas 0.1 Gyr 10 kpc

10 kpc

Philip Hopkins

with Eliot Quataert, Norm Murray, Lars Hernquist, Dusan Keres, Todd Thompson, Desika Narayanan, Dan Kasen, T. J. Cox, Chris Hayward, Kevin Bundy, & more

The Structure of the Interstellar Medium: Turbulence, Gravity, & Feedback

0.1 Gyr

0.1 Gyr

10 kpc

Philip Hopkins

10 kpc

PFH 2011, 2012 (arXiv:1111.2863, 1201.4387) PFH, Quataert, & Murray 2011a,b,c (arXiv: 1101.4940, 1110.4636, 1110.4638)

Stars

Overview

> (1) The Problem

> (2) The ISM as a Random Process:

Supersonic Turbulence + Gravity: Regularity from Chaos

Applications of the "Excursion Set" Formalism

(3) What Role Does "Feedback" Physics Play? "Microphysics" of the ISM

The ISM SUPER-SONIC TURBULENCE DOMINATES (ALMOST) ALL SCALES

- **Gravity**
- Turbulence
- Magnetic, Thermal, Cosmic Ray, Radiation Pressure
- Cooling (atomic, molecular, metal-line, free-free)
- Star & BH Formation/Growth
- "Feedback": Massive stars, SNe, BHs, external galaxies, etc.

Tuesday, December 25, 12

The ISM YET THERE IS SURPRISING REGULARITY

The ISM YET THERE IS SURPRISING REGULARITY

The ISM YET THERE IS SURPRISING REGULARITY

$$E(k) \propto k^{-p} \qquad dE \equiv E(k) dk$$
$$(k E(k) \sim u_t(k)^2)$$

$$E(k) \propto k^{-p} \qquad dE \equiv E(k) dk$$
$$(k E(k) \sim u_t(k)^2)$$

$$E(k) \propto k^{-p} \qquad dE \equiv E(k) dk$$
$$(k E(k) \sim u_t(k)^2)$$

$$dp(\ln \rho | R) = \frac{1}{\sqrt{2\pi S(R)}} \exp\left[\frac{-(\ln \rho - \langle \ln \rho \rangle)^2}{2 S(R)}\right]$$

$$dp(\ln \rho | R) = \frac{1}{\sqrt{2\pi S(R)}} \exp\left[\frac{-(\ln \rho - \langle \ln \rho \rangle)^2}{2 S(R)}\right]$$

$$S_k = \ln\left[1 + \alpha \mathcal{M}(k)^2\right]$$

$$Lemaster & Stone 2009$$

$$1 \qquad 2 \qquad 3$$

$$\ln(1 + 0.5 \text{ Mach}^2)$$

$$S(R) = \int d\ln k S_k |W(k, R)|^2$$

Extended Press-Schechter / Excursion-Set Formalism

- Press & Schechter '74:
 - r Fluctuations a Gaussian random field
 - Know linear power spectrum P(k~1/r): variance ~ k³ P(k)

Extended Press-Schechter / Excursion-Set Formalism

- Press & Schechter '74:
 - r Fluctuations a Gaussian random field
 - Know linear power spectrum P(k~1/r): variance ~ k³ P(k)

- "Count" mass above critical fluctuation: "Halos"
 - > Turnaround & gravitational collapse $ar{
 ho}(< R \sim 1/k) >
 ho_{
 m crit}$

Extended Press-Schechter / Excursion-Set Formalism

- Press & Schechter '74:
 - r Fluctuations a Gaussian random field
 - Know linear power spectrum P(k~1/r): variance ~ k³ P(k)

- "Count" mass above critical fluctuation: "Halos"
 - > Turnaround & gravitational collapse $ar{
 ho}(< R \sim 1/k) >
 ho_{
 m crit}$

 Generalize to conditional probabilities,
 N-point statistics, resolve "cloud in cloud" problem (e.g. Bond et al. 1991)

$$\omega^2 = \kappa^2 + c_s^2 k^2 + u_t(k)^2 k^2 - \frac{4\pi G \rho |k|h}{1 + |k|h}$$

Chandrasekhar '51, Vandervoort '70, Toomre '77

$$\omega^2 = \kappa^2 + c_s^2 \, k^2 + u_t(k)^2 \, k^2 - \frac{4\pi \, G \, \rho \, |k| h}{1 + |k| h}$$
 Angular Momentum

 $\kappa \sim \frac{V_{\rm disk}}{R_{\rm disk}}$

Chandrasekhar '51, Vandervoort '70, Toomre '77

Mode Grows (Collapses) when w<0:

$$\rho > \rho_c(k) = \rho_0 \left(1 + |kh| \right) \left[\left(\mathcal{M}_h^{-2} + |kh|^{1-p} \right) kh + \frac{2}{|kh|} \right]$$

Chandrasekhar '51, Vandervoort '70, Toomre '77

PFH 2011

PFH 2011

PFH 2011

PFH 2011

The "First Crossing" Mass Function VS GIANT MOLECULAR CLOUDS

The "First Crossing" Mass Function **VS GIANT MOLECULAR CLOUDS**

 $r_{
m sonic} \ll r \ll h$ $S(r) \sim S_0$

 $r_{
m sonic} \ll r \ll h$ $S(r) \sim S_0$

$$\frac{\mathrm{d}n}{\mathrm{d}M} \propto M^{-\alpha} \, e^{-(M/M_J)^{\beta}}$$

Tuesday, December 25, 12

The "Last Crossing" Mass Function VS PROTOSTELLAR CORES & THE STELLAR IMF

The "Last Crossing" Mass Function VS PROTOSTELLAR CORES & THE STELLAR IMF

"Void" Abundance VS HI "HOLES" IN THE ISM

Tuesday, December 25, 12

Structural Properties of "Clouds" LARSON'S LAWS EMERGE NATURALLY

Tuesday, December 25, 12

Structural Properties of "Clouds" LARSON'S LAWS EMERGE NATURALLY

Tuesday, December 25, 12

Evolve the Fluctuations in Time CONSTRUCT "MERGER/FRAGMENTATION" TREES

$$p(\delta \mid \tau) = \frac{1}{\sqrt{2\pi S \left(1 - \exp\left[-2\tau\right]\right)}} \exp\left[-\frac{\left(\delta - \delta(t=0) \exp\left[-\tau\right]\right)^2}{2 S \left(1 - \exp\left[-2\tau\right]\right)}\right]$$
$$\tau \equiv u_t(k) \, k \, t \sim \frac{t}{t_{\text{cross}}}$$

Evolve the Fluctuations in Time CONSTRUCT "MERGER/FRAGMENTATION" TREES

1. What Maintains the Turbulence?

1. What Maintains the Turbulence?

1. What Maintains the Turbulence?

Efficient Cooling: $\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} v_{\rm turb}}{t_{\rm crossing}}$

2. Why Doesn't Everything Collapse?

1. What Maintains the Turbulence?

Efficient Cooling: $\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} v_{\rm turb}}{t_{\rm crossing}}$

2. Why Doesn't Everything Collapse?

Tuesday, December 25, 12

Why Doesn't Everything Collapse? Q: WHY IS STAR FORMATION SO INEFFICIENT?

Stellar Feedback is Key to Galaxy Formation! SO WHAT'S THE PROBLEM?

 Standard (in Galaxy Formation):
 Couple SNe energy as "heating"/thermal energy

FAILS:

$$t_{\rm cool} \sim 4000 \,{\rm yr} \left(\frac{n}{{\rm cm}^{-3}}\right)^{-1}$$

 $t_{\rm dyn} \sim 10^8 \,{\rm yr} \left(\frac{n}{{\rm cm}^{-3}}\right)^{-1/2}$

- Turn off cooling
- Force wind by hand
 ('kick' out of galaxy)

 High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- "Energy Injection":
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- "Energy Injection":
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)
- *Explicit* Momentum Flux:
 - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

> SNe

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

Stellar Winds

$$\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$$

Energy (dilute gas)

Heat to $C_s > V_{esc}$: unbound

eg: solar wind SN-heated galactic wind

Momentum

(dense gas; energy radiated)

Force induces δV : if ${\sim}V_{esc}$ drive wind

eg: O-star winds molecular gas δV's

Tuesday, December 25, 12

Shock-heated gas acts on cold gas iff $p_{ m hot} \gtrsim \pi G \Sigma_g^2$

Shock-heated gas acts on cold gas iff $p_{ m hot}\gtrsim\pi G\Sigma_g^2$... but ...

 $p_{\rm hot} \gtrsim \pi G \Sigma_g^2 \rightarrow \dot{E}_{\rm cool} \gg \dot{E}_{\rm SNe} \text{ for } \Sigma_g \gtrsim 0.02 \,\mathrm{g \, cm^{-2}}$

Shock-heated gas acts on cold gas iff $p_{
m hot}\gtrsim\pi G\Sigma_g^2$... but ...

 $p_{\rm hot} \gtrsim \pi G \Sigma_g^2 \rightarrow \dot{E}_{\rm cool} \gg \dot{E}_{\rm SNe} \text{ for } \Sigma_g \gtrsim 0.02 \,\mathrm{g \, cm^{-2}}$

Hot gas can vent: cannot affect bulk of gas mass

Tuesday, December 25, 12

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} v_{\rm turb}}{t_{\rm crossing}}$$

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
\triangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$

 \triangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

 $P_* \sim P_{\rm diss}$

Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$

Colla

$$\dot{P}_* \sim \dot{P}_{\text{diss}}$$

 $\dot{P}_* \sim \text{few} \times \frac{L}{c} \sim \epsilon_* \dot{M}_* c$

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma\Omega}{\pi G\Sigma}$$

$$\dot{P}_* \sim \dot{P}_{\rm diss}$$

$$\dot{P}_* \sim few \times \frac{L}{c} \sim \epsilon_* \, \dot{M}_* \, c$$

$$\longrightarrow \dot{\Sigma}_* \sim \left(\frac{\sigma}{\epsilon_* c}\right) \, \Sigma_{\rm gas} \Omega \sim 0.02 \, \Sigma_{\rm gas} \Omega$$

Spiral Galaxy M101 Spitzer Space Telescope • Hubble Space NASA / JPL-Caltech / ESA / CXC / STScl

Hopkins, Quataert, & Murray, 2011b

Hopkins, Quataert, & Murray, 2011b

Compare GMC Mass Function INDEPENDENT OF FEEDBACK, ONCE TURBULENCE MAINTAINED

PFH, Quataert, & Murray, 2011b

BUT, GMCs are Short-Lived FEEDBACK "RECYCLES" MASS: STEADY-STATE MASS FUNCTION

SMC 100 pc

PFH, Quataert, & Murray, 2011b

BUT, GMCs are Short-Lived PREVENTS RUNAWAY COLLAPSE

KEEP?

Stellar Feedback gives Self-Regulated Star Formation

Stellar Feedback gives Self-Regulated Star Formation

Stellar Feedback gives Self-Regulated Star Formation

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a

Global Star Formation Rates are INDEPENDENT of High-Density SF Law

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008

Global Star Formation Rates are INDEPENDENT of High-Density SF Law

> Set by feedback (i.e. SFR) needed to maintain marginal stability

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008

Gas

How Efficient Are Galactic Super-Winds? DOES IT RESOLVE THE GALAXY MASS FUNCTION PROBLEM?

PFH, Quataert, & Murray, 2011c

Future Directions WHAT CAN WE EXPLORE WITH MORE REALISTIC ISM/FEEDBACK PHYSICS?

- Galactic "Super-Winds"
- Star & Globular Cluster Formation
- Mergers & Starbursts: ~1000x "normal" densities (D. Narayanan, T.J. Cox)
- Cosmological:
 - Galaxy disk formation (D. Keres)
 - Dwarf populations: CDM "crisis"? (M. Kuhlen)
- AGN Feedback: Physics & Coupling:
 - Radiation Pressure, Relativistic Jets, Accretion Disk Winds (D. Kasen, J. DeBuhr, N. Roth)

ISM structure derives from supersonic turbulence + gravity:

- Lognormal density PDF: Gaussian random field
- Predict & understand:
 - GMC Mass Function & Structure ("first crossing")
 - Stellar IMF ("last crossing")
 - > (Nearly) scale-free collapse in turbulent field
 - Clustering of Stars
 - General Turbulent Collapse (e.g. "turbulent box" simulations)

Star formation is Feedback-Regulated: independent of small-scale SF 'law'

- Need 'enough' stars to offset dissipation (set by gravity)
- Leads to Kennicutt relation & super-winds
- Different mechanisms dominate different regimes:
 - > High densities: radiation pressure
 - Intermediate: HII heating, stellar wind momentum
 - Low densities: SNe & stellar wind shock-heating
 - > No *one* mechanism works