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Overview

Ø (1) The Problem

Ø (2) The ISM as a Random Process:

Ø Supersonic Turbulence + Gravity: Regularity from Chaos

Ø Applications of the “Excursion Set” Formalism

Ø (3) What Role Does “Feedback” Physics Play?

Ø “Microphysics” of the ISM
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LMCThe ISM
 

SUPER-SONIC TURBULENCE
  DOMINATES (ALMOST) ALL SCALES

Ø Gravity 
Ø Turbulence
Ø Magnetic, Thermal, Cosmic Ray, Radiation Pressure
Ø Cooling (atomic, molecular, metal-line, free-free)
Ø Star & BH Formation/Growth
Ø “Feedback”: Massive stars, SNe, BHs, 

     external galaxies, etc.
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The ISM
 

YET THERE IS SURPRISING REGULARITY
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The ISM
 

YET THERE IS SURPRISING REGULARITY
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Lognormal in r:
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  Ostriker, & others
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LMCExtended Press-Schechter / Excursion-Set Formalism
 

Ø Press & Schechter ‘74:
Ø r Fluctuations a Gaussian random field
Ø Know linear power spectrum P(k~1/r): 

   variance  ~ k3 P(k)
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LMCExtended Press-Schechter / Excursion-Set Formalism
 

Ø Press & Schechter ‘74:
Ø r Fluctuations a Gaussian random field
Ø Know linear power spectrum P(k~1/r): 

   variance  ~ k3 P(k)

Ø “Count” mass above critical fluctuation: “Halos”
Ø Turnaround & gravitational collapse

⇢̄(< R ⇠ 1/k) > ⇢crit

Ø Generalize to conditional probabilities, 
   N-point statistics, resolve “cloud in cloud” problem
        (e.g. Bond et al. 1991)
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What Defines a Fluctuation of Interest?
 

DISPERSION RELATION: 

Chandrasekhar ‘51, Vandervoort ‘70, Toomre ‘77
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“Counting” Collapsing Objects
 

EVALUATE DENSITY FIELD vs. “BARRIER” 

PFH 2011
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“Counting” Collapsing Objects
 

EVALUATE DENSITY FIELD vs. “BARRIER” 

PFH 2011

First
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GMCs
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“Counting” Collapsing Objects
 

EVALUATE DENSITY FIELD vs. “BARRIER” 

PFH 2011
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GMCs

Cores/IMF

“Counting” Collapsing Objects
 

EVALUATE DENSITY FIELD vs. “BARRIER” 

PFH 2011
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The “First Crossing” Mass Function
 

VS GIANT MOLECULAR CLOUDS 

PFH 2011
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PFH 2011
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The “First Crossing” Mass Function
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PFH 2011
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The “First Crossing” Mass Function
 

VS GIANT MOLECULAR CLOUDS 

PFH 2011
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Non-Gaussianity
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The “Last Crossing” Mass Function
 

VS PROTOSTELLAR CORES & THE STELLAR IMF

PFH 2012
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The “Last Crossing” Mass Function
 

VS PROTOSTELLAR CORES & THE STELLAR IMF

PFH 2012
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“Void” Abundance
 

VS HI “HOLES” IN THE ISM

PFH 2011

Don’t need SNe to “clear out” voidsKEEP?
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Structural Properties of “Clouds”
 

LARSON’S LAWS EMERGE NATURALLY

KEEP?
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Structural Properties of “Clouds”
 

LARSON’S LAWS EMERGE NATURALLY

KEEP?
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Clustering
 

PREDICT N-POINT CORRELATION FUNCTIONS

PFH 2011

1 + ⇠(r |M) ⌘ hn[M | r0 < r]i
hn[M ]i

First Crossing: 
  GMCs & 
    new star clusters

Predicted

Tuesday, December 25, 12



Clustering
 

PREDICT N-POINT CORRELATION FUNCTIONS

Text

Last Crossing: 
  Cores & Stars

PFH 2012b

1 + ⇠(r |M) ⌘ hn[M | r0 < r]i
hn[M ]i
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Clustering
 

PREDICT N-POINT CORRELATION FUNCTIONS

Text

Last Crossing: 
  Cores & Stars

PFH 2012b

1 + ⇠(r |M) ⌘ hn[M | r0 < r]i
hn[M ]i
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Clustering
 

PREDICT N-POINT CORRELATION FUNCTIONS

Text

Last Crossing: 
  Cores & Stars

Why Do Stars 
    Form in 
    Clusters?

S ⇠ lnM(k)2

⇠ ln r3�p

PFH 2012b

1 + ⇠(r |M) ⌘ hn[M | r0 < r]i
hn[M ]i
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CONSTRUCT “MERGER/FRAGMENTATION” TREES
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CONSTRUCT “MERGER/FRAGMENTATION” TREES
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  (Cooling+Gravity+MHD)

PFH 2011
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Open Questions:

1. What Maintains the Turbulence?
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Kennicutt 1998

L
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�
S
F
R

Log�gas / �dyn

Why Doesn’t Everything Collapse?
 

Q: WHY IS STAR FORMATION SO INEFFICIENT?
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Stellar Feedback is Key to Galaxy Formation!
SO WHAT’S THE PROBLEM?

No Feedback
SNe Heating Alone

Cooling Turned Off

“Disk” with thermal feedback

Piontek & Steinmetz

Ø Standard (in Galaxy Formation): 
    Couple SNe energy 
      as “heating”/thermal energy

Ø “Cheat”:
Ø Turn off cooling
Ø Force wind by hand

  (‘kick’ out of galaxy)

t
cool

⇠ 4000 yr
⇣ n

cm�3

⌘�1

tdyn ⇠ 108 yr
⇣ n

cm�3

⌘�1/2

Ø FAILS:
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ESA

Stellar Feedback: Understanding the key Physics
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ESA

Stellar Feedback: Understanding the key Physics

Ø High-resolution (~1pc), molecular cooling (<100 K), 
    SF only at highest densities (nH>1000 cm-3)

Ø “Energy Injection”:
Ø SNe (II & Ia)
Ø Stellar Winds
Ø Photoionization (HII Regions)

Ø Explicit Momentum Flux:
Ø Radiation Pressure

Ø SNe

Ø Stellar Winds

Ṗrad ⇠ L

c
(1 + �IR)

ṖSNe ⇠ ĖSNe v
�1
ejecta

ṖW ⇠ Ṁ vwind
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Feedback 101:

M82

Energy 
(dilute gas)

Heat to Cs>Vesc : unbound

eg: solar wind
SN-heated galactic wind

Momentum 
(dense gas; energy radiated)

Force induces δV : 
if ~Vesc drive wind

eg: O-star winds 
molecular gas δV’s

Carina
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Feedback 101:

Equilibrium:
Pressure = πGΣg2

M82
⌃g (cold gas) ⇠ 0.1� 100 g cm

�2
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Pressure = πGΣg2

• Shock-heated gas acts on cold gas iff p
hot

& ⇡G⌃2

g

M82

p
hot

& ⇡G⌃

2

g ! ˙E
cool

� ˙E
SNe

for ⌃g & 0.02 g cm�2

... but ...

⌃g (cold gas) ⇠ 0.1� 100 g cm

�2
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Feedback 101:

Equilibrium:
Pressure = πGΣg2

• Shock-heated gas acts on cold gas iff p
hot

& ⇡G⌃2

g

M82

p
hot

& ⇡G⌃

2

g ! ˙E
cool

� ˙E
SNe

for ⌃g & 0.02 g cm�2

... but ...

⌃g (cold gas) ⇠ 0.1� 100 g cm

�2

‣  Hot gas can vent: cannot affect bulk of gas mass
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Kennicutt-Schmidt relation should emerge naturally
(IF IT’S REALLY FEEDBACK-REGULATED)
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Ø Efficient cooling       the gas disk dissipates its support:

set by global properties:
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Ṗ⇤ ⇠ few ⇥ L

c
⇠ ✏⇤ Ṁ⇤ c
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Kennicutt-Schmidt relation should emerge naturally
(IF IT’S REALLY FEEDBACK-REGULATED)

Ø Collapse stops when momentum input from feedback:

Ø Efficient cooling       the gas disk dissipates its support:

set by global properties:

Q ⌘ �⌦

⇡G⌃
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Ṗ
diss

⇠ M
gas

v
turb

t
crossing

Ṗ⇤ ⇠ few ⇥ L

c
⇠ ✏⇤ Ṁ⇤ c

⇠ Mgas �disk ⌦

Kennicutt-Schmidt relation should emerge naturally
(IF IT’S REALLY FEEDBACK-REGULATED)

Ø Collapse stops when momentum input from feedback:

Ø Efficient cooling       the gas disk dissipates its support:

set by global properties:

Q ⌘ �⌦

⇡G⌃

Ṗ⇤ ⇠ Ṗdiss

⌃̇⇤ ⇠
✓

�

✏⇤c

◆
⌃gas⌦ ⇠ 0.02⌃gas⌦
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Hopkins, Quataert, & Murray, 2011b

KEEP?
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NGC 1097 (Spitzer)

Hopkins, Quataert, & Murray, 2011b
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Feedback Maintains Turbulence
CASCADE INVARIANT TO MICROPHYSICS

Normal Feedback

No SNe or Stellar Winds
No Radiation Pressure

Feedback Strength x30

No HII Photoheating

Time  [Gyr]

To
om

re
 Q

p=2

p=5/3

k [kpc-1]
0.1 1 10 100

lo
g(

 E
[k

] )

0

2

4

p=2

vx
vy

vz
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Cs

PFH, Quataert, & Murray, 2011b

Excursion Set Prediction

Compare GMC Mass Function
INDEPENDENT OF FEEDBACK, ONCE TURBULENCE MAINTAINED
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PFH, Quataert, & Murray, 2011b

BUT, GMCs are Short-Lived
FEEDBACK “RECYCLES” MASS: STEADY-STATE MASS FUNCTION

Ṗ⇤ = ✏̇⇤ M⇤ c > Fgrav ⇠ GM2
cl

R2
cl
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PFH, Quataert, & Murray, 2011b

BUT, GMCs are Short-Lived
PREVENTS RUNAWAY COLLAPSE

    with
  feedback

        no
  feedback

KEEP?
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Stellar Feedback gives Self-Regulated Star Formation

with feedback

no feedback

with feedback

no feedback

Massive High-z Disk Dwarf Starburst
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Stellar Feedback gives Self-Regulated Star Formation

with feedback

no feedback

with feedback

no feedbackno radiation 
   pressure

Massive High-z Disk Dwarf Starburst

Tuesday, December 25, 12



Stellar Feedback gives Self-Regulated Star Formation

with feedback

no feedback

with feedback

no feedbackno radiation 
   pressure

no SNe or 
  stellar winds

Massive High-z Disk Dwarf Starburst
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with feedbackno feedback

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a
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with feedbackno feedback

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a

⌃̇⇤ ⇠ ⌃gas ⌦
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with feedbackno feedback

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a

⌃̇⇤ ⇠ ⌃gas ⌦

⌃̇⇤ ⇠ 0.02⌃gas ⌦
Ṗ⇤ ⇠ Ṗdiss
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Global Star Formation Rates are INDEPENDENT of High-Density SF Law

Hopkins, Quataert, & Murray 2011
     also Saitoh et al. 2008

SF Density ThresholdEfficiency (SF per tdyn) Index (SFR ~ rn )
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Global Star Formation Rates are INDEPENDENT of High-Density SF Law

Hopkins, Quataert, & Murray 2011
     also Saitoh et al. 2008

SF Density ThresholdEfficiency (SF per tdyn) Index (SFR ~ rn )

Ø Set by feedback (i.e. SFR) needed to maintain marginal stability
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Galactic 
    Super-Winds

Tuesday, December 25, 12



How Efficient Are Galactic Super-Winds?
DOES IT RESOLVE THE GALAXY MASS FUNCTION PROBLEM?

PFH, 
Quataert, 
& Murray, 
       2011c

Ṁ
wind

⇡ 10 Ṁ⇤

⇣ V
max

100 km s�1

⌘�1

⇣ ⌃
gas

10M� pc2

⌘�0.6
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Future Directions
WHAT CAN WE EXPLORE WITH MORE REALISTIC ISM/FEEDBACK PHYSICS?

Ø Galactic “Super-Winds”

Ø Star & Globular Cluster Formation 

Ø Mergers & Starbursts: ~1000x “normal” densities
      (D. Narayanan, T.J. Cox)

Ø Cosmological:
Ø Galaxy disk formation (D. Keres)
Ø Dwarf populations: CDM “crisis”? (M. Kuhlen)

Ø AGN Feedback: Physics & Coupling:
Ø Radiation Pressure, Relativistic Jets, Accretion Disk Winds

  (D. Kasen, J. DeBuhr, N. Roth)
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Summary:
Ø ISM structure derives from supersonic turbulence + gravity:

Ø Lognormal density PDF: Gaussian random field 
Ø Predict & understand:

Ø GMC Mass Function & Structure (“first crossing”)
Ø Stellar IMF (“last crossing”)

Ø (Nearly) scale-free collapse in turbulent field
Ø Clustering of Stars 
Ø General Turbulent Collapse (e.g. “turbulent box” simulations)

Ø Star formation is Feedback-Regulated: independent of small-scale SF ‘law’
Ø Need ‘enough’ stars to offset dissipation (set by gravity)
Ø Leads to Kennicutt relation & super-winds

Ø  

Ø Different mechanisms dominate different regimes:
Ø High densities: radiation pressure
Ø Intermediate: HII heating, stellar wind momentum
Ø Low densities: SNe & stellar wind shock-heating

Ø No one mechanism works 
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