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LMCThe Turbulent ISM
 

IMPORTANT ON 
     (ALMOST) ALL SCALES

Ø Gravity 
Ø Turbulence
Ø Magnetic, Thermal, Cosmic Ray, Radiation Pressure
Ø Cooling (atomic, molecular, metal-line, free-free)
Ø Star & BH Formation/Growth
Ø “Feedback”: Massive stars, SNe, BHs, 

     external galaxies, etc.
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The ISM
 

YET THERE IS SURPRISING REGULARITY
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DM Halos?!

Tuesday, December 25, 12



LMCExtended Press-Schechter / Excursion-Set Formalism
 

Ø Press & Schechter ‘74:
Ø r Fluctuations a Gaussian random field
Ø Know linear power spectrum P(k~1/r): 

   variance  ~ k3 P(k)
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LMCExtended Press-Schechter / Excursion-Set Formalism
 

Ø Press & Schechter ‘74:
Ø r Fluctuations a Gaussian random field
Ø Know linear power spectrum P(k~1/r): 

   variance  ~ k3 P(k)

Ø “Count” mass above critical fluctuation: “Halos”
Ø Turnaround & gravitational collapse

⇢̄(< R ⇠ 1/k) > ⇢crit
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LMCExtended Press-Schechter / Excursion-Set Formalism
 

Ø Press & Schechter ‘74:
Ø r Fluctuations a Gaussian random field
Ø Know linear power spectrum P(k~1/r): 

   variance  ~ k3 P(k)

Ø “Count” mass above critical fluctuation: “Halos”
Ø Turnaround & gravitational collapse

⇢̄(< R ⇠ 1/k) > ⇢crit

Ø Generalize to conditional probabilities, 
   N-point statistics, resolve “cloud in cloud” problem
        (e.g. Bond et al. 1991)
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E(k) / k�p (k E(k) ⇠ ut(k)
2)

Turbulence
 

BASIC EXPECTATIONS

Velocity:
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E(k) / k�p (k E(k) ⇠ ut(k)
2)

Turbulence
 

BASIC EXPECTATIONS

Velocity:

Text

dp(ln ⇢ |R) =

1p
2⇡ S(R)

exp

h�(ln ⇢� hln ⇢i)2

2S(R)

i
Lognormal in r:

Vasquez-Semadeni, 
  Nordlund, Padoan, 
  Ostriker, & others

Density:
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E(k) / k�p (k E(k) ⇠ ut(k)
2)

Turbulence
 

BASIC EXPECTATIONS

Velocity:

Text

dp(ln ⇢ |R) =

1p
2⇡ S(R)

exp

h�(ln ⇢� hln ⇢i)2

2S(R)

i
Lognormal in r:

Vasquez-Semadeni, 
  Nordlund, Padoan, 
  Ostriker, & others

Density:

S(R) =

Z
d ln k Sk |W (k, R)|2
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!2 = 2 + c2s k
2 + ut(k)

2 k2 � 4⇡G ⇢ |k|h
1 + |k|h

What Defines a Fluctuation of Interest?
 

DISPERSION RELATION: 

Chandrasekhar ‘51, Vandervoort ‘70, Toomre ‘77
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!2 = 2 + c2s k
2 + ut(k)

2 k2 � 4⇡G ⇢ |k|h
1 + |k|h

What Defines a Fluctuation of Interest?
 

DISPERSION RELATION: 

Angular Momentum

 ⇠ Vdisk

Rdisk

Chandrasekhar ‘51, Vandervoort ‘70, Toomre ‘77
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Angular Momentum
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Pressure
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!2 = 2 + c2s k
2 + ut(k)

2 k2 � 4⇡G ⇢ |k|h
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What Defines a Fluctuation of Interest?
 

DISPERSION RELATION: 

Angular Momentum

 ⇠ Vdisk

Rdisk

Thermal
Pressure

/ r�2

Chandrasekhar ‘51, Vandervoort ‘70, Toomre ‘77

Turbulence
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r > r
sonic
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t > c2s
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!2 = 2 + c2s k
2 + ut(k)

2 k2 � 4⇡G ⇢ |k|h
1 + |k|h

What Defines a Fluctuation of Interest?
 

DISPERSION RELATION: 

Angular Momentum

 ⇠ Vdisk

Rdisk

Thermal
Pressure

/ r�2

Gravity

Chandrasekhar ‘51, Vandervoort ‘70, Toomre ‘77

Turbulence
/ rp�3 ⇠ r�1

r > r
sonic

: u2

t > c2s
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!2 = 2 + c2s k
2 + ut(k)

2 k2 � 4⇡G ⇢ |k|h
1 + |k|h

What Defines a Fluctuation of Interest?
 

DISPERSION RELATION: 

Angular Momentum

 ⇠ Vdisk

Rdisk

Thermal
Pressure

/ r�2

Gravity

Chandrasekhar ‘51, Vandervoort ‘70, Toomre ‘77

Turbulence
/ rp�3 ⇠ r�1

r > r
sonic

: u2

t > c2s

Mode Grows (Collapses) when w<0:

⇢ > ⇢c(k) = ⇢0 (1 + |kh|)
h
(M�2
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2
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“Counting” Collapsing Objects
 

EVALUATE DENSITY FIELD vs. “BARRIER” 

PFH 2011

Averaging Scale  R [pc]
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“Counting” Collapsing Objects
 

EVALUATE DENSITY FIELD vs. “BARRIER” 

PFH 2011

First
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GMCs

“Counting” Collapsing Objects
 

EVALUATE DENSITY FIELD vs. “BARRIER” 

PFH 2011
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GMCs

“Counting” Collapsing Objects
 

EVALUATE DENSITY FIELD vs. “BARRIER” 

PFH 2011
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GMCs

Cores/IMF

“Counting” Collapsing Objects
 

EVALUATE DENSITY FIELD vs. “BARRIER” 

PFH 2011
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p(� | ⌧) = 1p
2⇡ S (1� exp [�2⌧ ])

exp

h
� (� � �(t = 0) exp [�⌧ ])2

2S (1� exp [�2⌧ ])

i

Evolve the Fluctuations in Time
 

CONSTRUCT “MERGER/FRAGMENTATION” TREES

Time

Tuesday, December 25, 12
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exp

h
� (� � �(t = 0) exp [�⌧ ])2

2S (1� exp [�2⌧ ])

i

Evolve the Fluctuations in Time
 

CONSTRUCT “MERGER/FRAGMENTATION” TREES

Fr
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n 
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lla
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ed
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Ti

m
e

Simulations 
  (Cooling+Gravity+MHD)

Padoan & Nordlund
Vazquez-Semadeni 
PFH 2011

Time
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The “First Crossing” Mass Function
 

VS GIANT MOLECULAR CLOUDS 

PFH 2011
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PFH 2011
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The “First Crossing” Mass Function
 

VS GIANT MOLECULAR CLOUDS 

PFH 2011
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The “Last Crossing” Mass Function
 

VS PROTOSTELLAR CORES & THE STELLAR IMF

PFH 2012
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The “Last Crossing” Mass Function
 

VS PROTOSTELLAR CORES & THE STELLAR IMF

PFH 2012
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“Void” Abundance
 

VS HI “HOLES” IN THE ISM

PFH 2011

Don’t need SNe to “clear out” voidsKEEP?
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Structural Properties of “Clouds”
 

LARSON’S LAWS EMERGE NATURALLY

KEEP?
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Structural Properties of “Clouds”
 

LARSON’S LAWS EMERGE NATURALLY

KEEP?
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Clustering
 

PREDICT N-POINT CORRELATION FUNCTIONS

PFH 2011

1 + ⇠(r |M) ⌘ hn[M | r0 < r]i
hn[M ]i

First Crossing: 
  GMCs & 
    new star clusters

Predicted
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Clustering
 

PREDICT N-POINT CORRELATION FUNCTIONS

Text

Last Crossing: 
  Cores & Stars

PFH 2012b

1 + ⇠(r |M) ⌘ hn[M | r0 < r]i
hn[M ]i
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Clustering
 

PREDICT N-POINT CORRELATION FUNCTIONS

Text

Last Crossing: 
  Cores & Stars

PFH 2012b

1 + ⇠(r |M) ⌘ hn[M | r0 < r]i
hn[M ]i
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Clustering
 

PREDICT N-POINT CORRELATION FUNCTIONS

Text

Last Crossing: 
  Cores & Stars

Why is Star 
  Formation 
   Clustered?

S ⇠ lnM(k)2

⇠ ln r3�p

PFH 2012b

1 + ⇠(r |M) ⌘ hn[M | r0 < r]i
hn[M ]i
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Clustering of Stars: Predicted vs. Observations
 

PREDICT N-POINT CORRELATION FUNCTIONS
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Fragmentation Rate (per Dynamical Time)

Simulations 
  (Cooling+Gravity+MHD)

k [kpc-1]
0.1 1 10

lo
g(

 E
[k

] )

0

2 p=2

vz

Excursion Set
Number of GMCs

Power spectra

Linewidth-Size
  Relation

Intermittency 
  Exponents (ln[rho])

Testing the Analytics
vs. NUMERICAL SIMULATIONS

compilation 
  (30 sims)

Padoan & Nordlund
Vazquez-Semadeni

Liu & Fang

Bournaud & 
  Elmegreen

PFH

Correlation 
  Function/Clustering

Hansen, Klein et al.
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General, Flexible Theory:
EXTREMELY ADAPTABLE TO MOST CHOICES

Ø Complicated, multivariable 
  gas equations of state

Ø Accretion

Ø Magnetic Fields

Ø Time-Dependent Background 
  Evolution/Collapse

Ø Intermittency

Ø Correlated, multi-scale driving

Densities

Core MFs GMC MFs

Lognormal

Not-so
Lognormal
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Variation in the Core Mass Function
 

VS “NORMAL” IMF VARIATIONS

PFH 2012

Weak variation with Galactic Properties

Near-invariant with “mean” 
  cloud properties (up to sampling)
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Variation in the Core Mass Function
 

VS “NORMAL” IMF VARIATIONS

PFH 2012
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PFH 2012

MW: T
cold

⇠ 10K
�gas ⇠ 10 km s�1

(Q ⇠ 1 for ⌃gas ⇠ 10M� pc

�2
)

BUT, What About Starbursts?
 

Text
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PFH 2012

ULIRG: T
cold

⇠ 70K
�gas ⇠ 80 km s�1

(Q ⇠ 1 for ⌃gas ⇠ 1000M� pc

�2
)

MW: T
cold

⇠ 10K
�gas ⇠ 10 km s�1

(Q ⇠ 1 for ⌃gas ⇠ 10M� pc

�2
)

BUT, What About Starbursts?
 

Text
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�gas ⇠ 80 km s�1

(Q ⇠ 1 for ⌃gas ⇠ 1000M� pc

�2
)

MW: T
cold

⇠ 10K
�gas ⇠ 10 km s�1

(Q ⇠ 1 for ⌃gas ⇠ 10M� pc

�2
)

Core Mass Function

ULIRG

MW
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PFH 2012

ULIRG: T
cold

⇠ 70K
�gas ⇠ 80 km s�1

(Q ⇠ 1 for ⌃gas ⇠ 1000M� pc

�2
)

MW: T
cold

⇠ 10K
�gas ⇠ 10 km s�1

(Q ⇠ 1 for ⌃gas ⇠ 10M� pc

�2
)

Core Mass Function

ULIRG

MW

BUT, What About Starbursts?
 

Text

Mach number in ULIRGs: M & 100

MJeans is bigger
 but MSonic is smaller
      (bigger clouds with 
              more fragmentation)

BOTTOM-HEAVY: TURBULENCE WINS!
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PFH 2012

ULIRG: T
cold

⇠ 70K
�gas ⇠ 80 km s�1

(Q ⇠ 1 for ⌃gas ⇠ 1000M� pc

�2
)

MW: T
cold

⇠ 10K
�gas ⇠ 10 km s�1

(Q ⇠ 1 for ⌃gas ⇠ 10M� pc

�2
)

Core Mass Function

ULIRG

MW

Kroupa
    Chabrier

Van Dokkum & Conroy
      (nearby elliptical centers)

BUT, What About Starbursts?
 

Text

Mach number in ULIRGs: M & 100

MJeans is bigger
 but MSonic is smaller
      (bigger clouds with 
              more fragmentation)

BOTTOM-HEAVY: TURBULENCE WINS!
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Open Questions:

1. What Maintains the Turbulence?
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Open Questions:

1. What Maintains the Turbulence?

Ṗ
diss

⇠ M
gas

v
turb

t
crossing

Efficient Cooling:
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Open Questions:

1. What Maintains the Turbulence?

2. Why Doesn’t Everything Collapse?

Ṗ
diss

⇠ M
gas

v
turb

t
crossing

Efficient Cooling:
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Open Questions:

1. What Maintains the Turbulence?

2. Why Doesn’t Everything Collapse?

Ṗ
diss

⇠ M
gas

v
turb

t
crossing

Efficient Cooling:

“Top-down” turbulence can’t stop 
collapse once self-gravitating

       Fast Cooling: Ṁ⇤ ⇠ Mgas

tfreefall
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Summary:

Ø Turbulence + Gravity: ISM structure follows
Ø Lognormal density PDF is not critical 
Ø ANALYTICALLY  understand:

Ø GMC Mass Function & Structure (“first crossing”)
Ø Core MF (“last crossing”) & Linewidth-Size-Mass
Ø Clustering of Stars (correlation functions)

Ø Feedback Regulates & Sets Efficiencies of Star Formation
Ø K-S Law: ‘enough’ stars to offset dissipation (set by gravity)

Ø Independent of small-scale star formation physics (how stars form)
Ø  

* ISM statistics are far more fundamental than we typically assume *
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Kennicutt 1998

L
og

�
S
F
R

Log�gas / �dyn

Why Doesn’t Everything Collapse?
 

Q: WHY IS STAR FORMATION SO INEFFICIENT?
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Stellar Feedback is Key to Galaxy Formation!
SO WHAT’S THE PROBLEM?

No Feedback
SNe Heating Alone

Cooling Turned Off

“Disk” with thermal feedback

Piontek & Steinmetz

Ø Standard (in Galaxy Formation): 
    Couple SNe energy 
      as “heating”/thermal energy

Ø “Cheat”:
Ø Turn off cooling
Ø Force wind by hand

  (‘kick’ out of galaxy)

t
cool

⇠ 4000 yr
⇣ n

cm�3

⌘�1

tdyn ⇠ 108 yr
⇣ n

cm�3

⌘�1/2

Ø FAILS:
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ESA

Stellar Feedback: Understanding the key Physics
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ESA

Stellar Feedback: Understanding the key Physics

Ø High-resolution (~1pc), molecular cooling (<100 K), 
    SF only at highest densities (nH>1000 cm-3)
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ESA

Stellar Feedback: Understanding the key Physics

Ø High-resolution (~1pc), molecular cooling (<100 K), 
    SF only at highest densities (nH>1000 cm-3)

Ø “Energy Injection”:
Ø SNe (II & Ia)
Ø Stellar Winds
Ø Photoionization (HII Regions)
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ESA

Stellar Feedback: Understanding the key Physics

Ø High-resolution (~1pc), molecular cooling (<100 K), 
    SF only at highest densities (nH>1000 cm-3)

Ø “Energy Injection”:
Ø SNe (II & Ia)
Ø Stellar Winds
Ø Photoionization (HII Regions)

Ø Explicit Momentum Flux:
Ø Radiation Pressure

Ø SNe

Ø Stellar Winds

Ṗrad ⇠ L

c
(1 + �IR)

ṖSNe ⇠ ĖSNe v
�1
ejecta

ṖW ⇠ Ṁ vwind
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Stellar Feedback gives Self-Regulated Star Formation

with feedback

no feedback

with feedback

no feedback

Massive High-z Disk Dwarf Starburst
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Stellar Feedback gives Self-Regulated Star Formation

with feedback

no feedback

with feedback

no feedbackno radiation 
   pressure

Massive High-z Disk Dwarf Starburst
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Stellar Feedback gives Self-Regulated Star Formation

with feedback

no feedback

with feedback

no feedbackno radiation 
   pressure

no SNe or 
  stellar winds

Massive High-z Disk Dwarf Starburst
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with feedbackno feedback

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a
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with feedbackno feedback

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a

⌃̇⇤ ⇠ ⌃gas/⌧dyn
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with feedbackno feedback

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a

⌃̇⇤ ⇠ ⌃gas/⌧dyn ⌃̇⇤ ⇠ 0.02⌃gas/⌧dyn
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Kennicutt-Schmidt relation should emerge naturally
(IF IT’S REALLY FEEDBACK-REGULATED)
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Kennicutt-Schmidt relation should emerge naturally
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Ṗ⇤ ⇠ few ⇥ L

c
⇠ ✏⇤ Ṁ⇤ c
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Global Star Formation Rates are INDEPENDENT of High-Density SF Law

Hopkins, Quataert, & Murray 2011
     also Saitoh et al. 2008

SF Density ThresholdEfficiency (SF per tdyn) Index (SFR ~ rn )
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Global Star Formation Rates are INDEPENDENT of High-Density SF Law

Hopkins, Quataert, & Murray 2011
     also Saitoh et al. 2008

SF Density ThresholdEfficiency (SF per tdyn) Index (SFR ~ rn )

Ø Set by feedback (i.e. SFR) needed to maintain marginal stability
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Molecules Don’t Matter!
THEY ARE A TRACER

SMC

No Chemistry (SF from all gas)
SF from molecules only
SF, cooling track molecules

see also Glover 2011
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Molecules Don’t Matter!
THEY ARE A TRACER

SMC

No Chemistry (SF from all gas)
SF from molecules only
SF, cooling track molecules

Ø Just need some cooling channel: changes at Mgal < 106 Msun, Z<0.01 Zsun

see also Glover 2011
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Summary:

Ø Turbulence + Gravity: ISM structure follows
Ø Lognormal density PDF is not critical 
Ø ANALYTICALLY  understand:

Ø GMC Mass Function & Structure (“first crossing”)
Ø Core MF (“last crossing”) & Linewidth-Size-Mass
Ø Clustering of Stars (correlation functions)

Ø Feedback Regulates & Sets Efficiencies of Star Formation
Ø K-S Law: ‘enough’ stars to offset dissipation (set by gravity)

Ø Independent of small-scale star formation physics (how stars form)
Ø  

* ISM statistics are far more fundamental than we typically assume *
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