0.0 Gyr

Stars 0.1 Gyr

Stars

10 kpc

Milky Way

10 kpc

Starburst Disks

Star Formation, Black Holes, and Feedback in Galaxy Formation

Philip Hopkins

Eliot Quataert, Norm Murray, Lars Hernquist, Dusan Keres, Todd Thompson, Desika Narayanan, Dan Kasen, T. J. Cox, Chris Hayward, Kevin Bundy, & more

Overview

> (1) (Some) Open Problems

> (2) Stellar "Feedback" Processes:

Isolated Galaxies: Feedback Physics & Stars

ISM Structure & Galactic Outflows

Cosmological Implications

> (3) Super-Massive Black Holes & Accretion?

Motivation THE BIG PICTURE

Today

z~1090 (t~400,000 yr)

Motivation THE BIG PICTURE

Today

Motivation HOW DID WE GET TO GALAXIES TODAY?

Dark matter 'halos' collapse: gas cools into a disk

What happens once gas is actually inside galaxies?

The Problem: Baryons

Moster 2009

Moster 2009

Stellar Feedback is the Key! SO WHAT'S THE PROBLEM?

 Standard (in Galaxy Formation): Couple SNe (~1e51 erg/SN) as "heating"/thermal energy

FAILS:

$$t_{\rm cool} \sim 4000 \,{\rm yr} \left(\frac{n}{{\rm cm}^{-3}}\right)^{-1}$$

 $t_{\rm dyn} \sim 10^8 \,{\rm yr} \left(\frac{n}{{\rm cm}^{-3}}\right)^{-1/2}$

"Cheat":

- Turn off cooling
- Force wind by hand
 ('kick' out of galaxy)

 High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- "Energy Injection":
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- "Energy Injection":
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)
- *Explicit* Momentum Flux:
 - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

> SNe

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

Stellar Winds

$$\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$$

Spiral Galaxy M101 Spitzer Space Telescope • Hubble Space NASA / JPL-Caltech / ESA / CXC / STScl

Hopkins, Quataert, & Murray, 2011b

Hopkins, Quataert, & Murray, 2011b

Stellar Feedback gives Self-Regulated Star Formation

Stellar Feedback gives Self-Regulated Star Formation

Stellar Feedback gives Self-Regulated Star Formation

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a

Kennicutt-Schmidt relation emerges naturally

PFH, Quataert, & Murray, 2011a

Galaxy Mergers LABORATORY FOR STUDYING EXTREME CONDITIONS

Galaxy Mergers LABORATORY FOR STUDYING EXTREME CONDITIONS

Tuesday, December 25, 12

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} v_{\rm turb}}{t_{\rm crossing}}$$

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:
Kennicutt-Schmidt relation *should* emerge naturally (*IF* IT'S REALLY FEEDBACK-REGULATED)

 \triangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$
Collapse stops when momentum input from feedback:

 $P_* \sim P_{\rm diss}$

Kennicutt-Schmidt relation *should* emerge naturally (IF IT'S REALLY FEEDBACK-REGULATED)

Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma \Omega}{\pi G \Sigma}$$

Colla

$$\dot{P}_* \sim \dot{P}_{\text{diss}}$$

 $\dot{P}_* \sim \text{few} \times \frac{L}{c} \sim \epsilon_* \dot{M}_* c$

Kennicutt-Schmidt relation *should* emerge naturally (*IF* IT'S REALLY FEEDBACK-REGULATED)

 \blacktriangleright Efficient cooling \rightarrow the gas disk dissipates its support:

$$\dot{P}_{\rm diss} \sim \frac{M_{\rm gas} \, v_{\rm turb}}{t_{\rm crossing}} \sim M_{\rm gas} \, \sigma_{\rm disk} \, \Omega$$
set by global properties:
$$Q \equiv \frac{\sigma\Omega}{\pi G\Sigma}$$

$$\dot{P}_* \sim \dot{P}_{\rm diss}$$

$$\dot{P}_* \sim few \times \frac{L}{c} \sim \epsilon_* \, \dot{M}_* \, c$$

$$\longrightarrow \dot{\Sigma}_* \sim \left(\frac{\sigma}{\epsilon_* c}\right) \, \Sigma_{\rm gas} \Omega \sim 0.02 \, \Sigma_{\rm gas} \Omega$$

Global Star Formation Rates are INDEPENDENT of High-Density SF Law

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008

Global Star Formation Rates are INDEPENDENT of High-Density SF Law

> Set by feedback (i.e. SFR) needed to maintain marginal stability

Hopkins, Quataert, & Murray 2011 also Saitoh et al. 2008

What Else Can We Study About Star Formation and the ISM?

Super-Sonic Turbulence DOMINATES (ALMOST) ALL SCALES

- **Gravity**
- Turbulence
- Magnetic, Thermal, Cosmic Ray, Radiation Pressure
- Cooling (atomic, molecular, metal-line, free-free)
- Star & BH Formation/Growth
- "Feedback": Massive stars, SNe, BHs, external galaxies, etc.

Tuesday, December 25, 12

The ISM YET THERE IS SURPRISING REGULARITY

Compare Simulations & Turbulent Excursion-Set Predictions

SMC

The "Last Crossing" Mass Function VS PROTOSTELLAR CORES & THE STELLAR IMF

Clustering: Resolve Global GMC-Star Cluster Correlations PREDICT N-POINT CORRELATION FUNCTIONS

Clustering: Resolve Global GMC-Star Cluster Correlations PREDICT N-POINT CORRELATION FUNCTIONS

Clustering: Resolve Global GMC-Star Cluster Correlations PREDICT N-POINT CORRELATION FUNCTIONS

No-Feedback "Formal" Prediction for Collapse: (FROM ANALYTIC "MERGER/FRAGMENTATION" TREES)

with feedback, GMCs are Short-Lived FEEDBACK "RECYCLES" MASS: STEADY-STATE MASS FUNCTION

SMC 100 pc

PFH, Quataert, & Murray, 2011b

Study Chemistry in Extreme Conditions TRACERS OF SHOCKS & RADIATION IN DENSE MEDIA

The Gas not Forming Stars: Galaxy Winds and the Baryon Cycle

Gas

$$\dot{M}_{\rm wind} \approx 10 \, \dot{M}_{*} \left(\frac{V_c}{100 \, \rm km \, s^{-1}} \right)^{-1.1} \left(\frac{\Sigma_{\rm gas}}{10 \, \rm M_{\odot} \, pc^{-2}} \right)^{-0.5}$$

High Redshifts & The Inflow/Outflow Cycle

Cosmological Simulations "ZOOM-IN" ON THE FORMATION OF A MASSIVE GALAXY

Cosmological Simulations "ZOOM-IN" ON THE FORMATION OF A MASSIVE GALAXY

Proto-MW: Gas Temperature:

Insert Winds "By Hand" (Sub-Grid)	Following Feedback Physics

PFH & Keres et al

Should Galaxy Formation be Inefficient? WHAT CAN WE LEARN ABOUT COSMOLOGY AND STRUCTURE FORMATION?

Should Galaxy Formation be Inefficient? WHAT CAN WE LEARN ABOUT COSMOLOGY AND STRUCTURE FORMATION?

Should Galaxy Formation be Inefficient? WHAT CAN WE LEARN ABOUT COSMOLOGY AND STRUCTURE FORMATION?

PFH & Keres et a PFH, Bullock, & Onorbe et a

What About High-Mass Galaxies?

Why Do We Need AGN Feedback?

- Explain BH-host correlations
- Sharp color bimodality
- Removing/heating gas in groups

Why Do We Need AGN Feedback?

- Explain BH-host correlations
- Sharp color bimodality
- Removing/heating gas in groups

Rupke & Veilleux 2005,2011 Fischer et al. 2010 (Mrk 231) Feruglio et al. 2010 (Mrk 231) Alatalo et al. 2011 (NGC 1266)

Where to Now? How Do We Understand This?

Step 1: Stellar Feedback & the ISM

- High-resolution (~1pc), molecular cooling (<100 K), SF only at highest densities (n_H>1000 cm⁻³)
- Heating:
 - SNe (II & Ia)
 - Stellar Winds
 - Photoionization (HII Regions)
- *Explicit* Momentum Flux:
 - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

> SNe

$$\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$$

Stellar Winds

$$\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$$

Step 2: Inflow

Tuesday, December 25, 12

Step 2: Inflow

Tuesday, December 25, 12

Step 3: Observed Sources of AGN Feedback

• Jets

• heat IGM/ICM (low-density), but not dense ISM

Step 3: Observed Sources of AGN Feedback

- Jets
 - heat IGM/ICM (low-density), but not dense ISM
- Radiation Pressure
 - L_{AGN} >> L_{stars}

Step 3: Observed Sources of AGN Feedback

- Jets
 - heat IGM/ICM (low-density), but not dense ISM
- Radiation Pressure
 - $L_{AGN} >> L_{stars}$
- Accretion Disk Winds
 - Broad Absorption Line Winds 3

BAL Winds on ~1pc - 1kpc scales:

PFH in prep Wada et al.

 $v_{\rm launch}(0.1\,{\rm pc}) = 10,000\,{\rm km/s}$

Tuesday, December 25, 12

Summary:

- Star formation is Feedback-Regulated: independent of small-scale SF 'law'
 - Need enough stars to offset dissipation (gravity)
 - Leads to SFR-galaxy correlations & super-winds
- Different mechanisms dominate different regimes:
 - High-r: radiation pressure
 - Intermediate: HII heating, stellar wind momentum
 - Low-r: SNe & stellar wind shock-heating
 - > No one mechanism is sufficient to explain observations
- Mergers: Extreme laboratory (>100x GMC densities!)
 - Efficient disk survival
 - Super-winds: ~10-500 M_{sun}/yr
- Cosmologically: Not just top-down inflows:
 - Winds determine IGM enrichment, temperature, & subsequent inflow structure
- Most Massive Galaxies: Need "AGN" Feedback!
 - Disk Winds+Radiation Pressure+Jets: Explain M_{BH}-S & suppress SF