Feedback: Now With Physics

Observed Starlight

Molecular

Galaxy Merger

X-Rays

Star Formation

Philip Fajardo Hopkins & the FIRE Team

Caltech

Feedback: Now With Physics

Observed Starlight

Molecular

Galaxy Merger

X-Rays

Star Formation

Philip Fajardo Hopkins & the FIRE Team

Caltech

What's the Big Picture?

The Big Question: HOW DO WE GO FROM BIG BANG TO MILKY WAY?

z~1090 (t~400,000 yr)

The Big Question: HOW DO WE GO FROM BIG BANG TO MILKY WAY?

The Big Question: HOW DO WE GO FROM BIG BANG TO MILKY WAY?

Large scales: Gravity + Dark Matter / Energy Works!

Observations vs Theory (SDSS vs Millennium Simulation)

Large scales: Gravity + Dark Matter / Energy Works!

Observations vs Theory (SDSS vs Millennium Simulation)

Our work:

~10⁻⁵ pc Stars, protostellar disks

Cores, clusters, Supernovae blastwaves **~10¹-10² pc** Molecular clouds, Star-Forming Regions

Our work:

STRUCTURE FORMATION

STAR FORMATION

Planet formation (PFH & Christiansen)

Our work:

STRUCTURE FORMATION

STAR FORMATION

Planet formation (PFH & Christiansen)

Add some fluid dynamics and chemistry, and go!

The Basic Picture:

The Basic Picture:

Done!

Not so fast...

Problem: WHY SO FEW GALAXIES & STARS?

Problem: WHY SO FEW GALAXIES & STARS?

Problem: WHERE ARE THE "MISSING SATELLITES"?

Predicted structure (dark matter) Observed around us

Problem: WHY ISN'T THERE MORE DARK MATTER? ("CUSP-CORE" or "TOO BIG TO FAIL")

Problem: WHY ISN'T THERE MORE DARK MATTER? ("CUSP-CORE" or "TOO BIG TO FAIL")

Stars Matter

Stars Matter

... Nature hates theorists

... Nature hates theorists

But we know what stars do! (...well enough...)

Previous "State of the Art"

Resolution: ~kpc ~10⁶ M_{sun}

Interstellar Medium: single, ideal fluid

Winds? "sub-grid" (cheat a bit)

turn off coolingthrow out mass "by hand"

 $M_{\rm wind} = ({\rm fudge}) \times M_{\rm stars}$

e.g. "Illustris", "OWLS," "EAGLE,"anything I wrote before 2012...

Previous "State of the Art"

Resolution: ~kpc ~10⁶ M_{sun}

Interstellar Medium: single, ideal fluid

Winds? "sub-grid" (cheat a bit)

turn off coolingthrow out mass "by hand"

 $M_{\rm wind} = ({\rm fudge}) \times M_{\rm stars}$

e.g. "Illustris", "OWLS," "EAGLE,"anything I wrote before 2012...

The FIRE Project Feedback In Realistic Environments

230 Myr Gas 1 kpc

 Resolution ~pc Cooling & Chemistry ~10 - 10¹⁰ K

• <u>Feedback:</u>

- SNe (II & Ia)
- Stellar Winds (O/B & AGB)
- Photoionization (HII regions) & Photo-electric (dust)
- Radiation Pressure (IR & UV)

- now with...
 - Magnetic fields
 - Anisotropic conduction & viscosity
 - Cosmic rays

Yellow: hot (>10⁶ K) Pink: warm (ionized, ~10⁴K) Blue: cold (neutral <10-8000 K)

The FIRE Project Feedback In Realistic Environments

230 Myr Gas 1 kpc

 Resolution ~pc Cooling & Chemistry ~10 - 10¹⁰ K

• <u>Feedback:</u>

- SNe (II & Ia)
- Stellar Winds (O/B & AGB)
- Photoionization (HII regions) & Photo-electric (dust)
- Radiation Pressure (IR & UV)

- now with...
 - Magnetic fields
 - Anisotropic conduction & viscosity
 - Cosmic rays

Yellow: hot (>10⁶ K) Pink: warm (ionized, ~10⁴K) Blue: cold (neutral <10-8000 K)

(movies at fire.northwestern.edu)

z=30.0

H 10 kpc

Stars (Hubble image): Blue: Young star clusters Red: Dust extinction

z=30.0

Gas: Magenta: cold $(< 10^4 K)$ Green: warm (ionized) Red: hot $(> 10^6 K)$

(movies at fire.northwestern.edu)

z=30.0

H 10 kpc

Stars (Hubble image): Blue: Young star clusters Red: Dust extinction

z=30.0

Gas: Magenta: cold $(< 10^4 K)$ Green: warm (ionized) Red: hot $(> 10^6 K)$

Why Are Galaxies Such Lightweights? GAS IS BLOWN OUT, INSTEAD OF TURNING INTO STARS

PFH et al. (arXiv:1311.2073)

Why Are Galaxies Such Lightweights? GAS IS BLOWN OUT, INSTEAD OF TURNING INTO STARS

PFH et al. (arXiv:1311.2073)

The KS Law is *Predicted*, Naturally, by Feedback *TOTALLY INDEPENDENT* OF "SUB-GRID" SF MODEL

Matt Orr (in prep) Hopkins+ 11,12,14 Agertz+14

The KS Law: It's Feedback.

Matt Orr (in prep) Hopkins+ 11,12,14

PFH '14 M. Sparre arxiv:1510.03869

Proto-Milky Way: Gas Temperature:

Insert Winds "By Hand" (Sub-Grid)

Following Full Feedback

PFH '14 M. Sparre arxiv:1510.03869

Proto-Milky Way: Gas Temperature:

Insert Winds "By Hand" (Sub-Grid)

Following Full Feedback

PFH '14 M. Sparre arxiv:1510.03869

6.2

Proto-Milky Way: Gas Temperature:

Insert Winds "By Hand" (Sub-Grid)

Following Full Feedback

Feedback Saves Cold Dark Matter? NO EXOTIC PHYSICS NECESSARY

 10^{9}

05

Density of Dark Matter

Wheeler et al. (arXiv:1504.02466)

Feedback Saves Cold Dark Matter? NO EXOTIC PHYSICS NECESSARY

 10^{9}

05

Density of Dark Matter

Wheeler et al. (arXiv:1504.02466)

Distance from Galaxy Center

1 kpc

Onorbe et al. (arXiv:1502.02036) Chan et al. (arXiv:1507.02282) Wheeler et al. (arXiv:1504.02466)

Feedback Saves Cold Dark Matter? NO EXOTIC PHYSICS NECESSARY

 10^{9}

5

Density of Dark Matter

Wheeler et al. (arXiv:1504.02466)

K. El-Badry (arXiv:1512.01235)

10 2 8 0 0.0 0.2 0.4 0.6 0.8 1.0 6 4

Orbits "pumped up"

12

0

0

 $|\Delta r|$ [kpc]

2 4 6 8 10 time since formation [Gyr]

• If DM orbits perturbed, stars are too!

K. El-Badry, arXiv:1512.01235

- Radial anisotropy
- Gradients "wiped out"
- Galactic radii oscillate

- Radial anisotropy
- Gradients "wiped out"
- Galactic radii oscillate

- Radial anisotropy
- Gradients "wiped out"
- Galactic radii oscillate

- Radial anisotropy
- Gradients "wiped out"
- Galactic radii oscillate

Predicts New Classes of Galaxies ULTRA-DIFFUSE SYSTEMS: THE NEW "NORMAL"

K. El-Badry (arXiv:1512.01235) + TK Chan (prep)

It Gets Worse! GALAXIES ARE NOT STEADY-STATE OBJECTS!

|kms|

 $\sigma_{\rm los}$ [

ω

K. El-Badry (arXiv:1610.04232)

cosmic time [Gyr]

It Gets Worse! GALAXIES ARE NOT STEADY-STATE OBJECTS!

S. Muratov (arXiv:1501.03155)

10 kpc

"feedback-dominated" low mass gas rich cold, violent outflows

to

"gravity-dominated" high mass gas poor gentle hot gas "venting"

C. Hayward (arxiv:1510.05650)

z=0.00

S. Muratov (arXiv:1501.03155)

10 kpc

"feedback-dominated" low mass gas rich cold, violent outflows

to

"gravity-dominated" high mass gas poor gentle hot gas "venting"

C. Hayward (arxiv:1510.05650)

z=0.00

Transition from Feedback-Dominated to "Calm" (Gravity-Dominated) BUILDUP OF METALLICITY GRADIENTS

Xiangcheng Ma (arXiv:1610.03498)

Transition from Feedback-Dominated to "Calm" (Gravity-Dominated) BUILDUP OF METALLICITY GRADIENTS

Xiangcheng Ma (arXiv:1610.03498)

z=0.00

Rotation is Rare: ONLY COMMON AT PEAK STAR FORMATION EFFICIENCY

Rotation is Rare: ONLY COMMON AT PEAK STAR FORMATION EFFICIENCY

Rotation is Rare: ONLY COMMON AT PEAK STAR FORMATION EFFICIENCY

Have we gone "Big Bang to Milky Way"?

Failures No More FEEDBACK EXPLAINS WHY SATELLITES ARE "MISSING"

Andrew Wetzel (arXiv:1602.05957)

Dark matter only simulation (dark matter)

+ baryons & feedback (dark matter)

Tidal destruction (e.g. Zolotov et al.) + Feedback-induced "dissipation" + baryons & feedback (stars)

Failures No More FEEDBACK EXPLAINS WHY SATELLITES ARE "MISSING"

Andrew Wetzel (arXiv:1602.05957)

Dark matter only simulation (dark matter)

+ baryons & feedback (dark matter)

Tidal destruction (e.g. Zolotov et al.) + Feedback-induced "dissipation" + baryons & feedback (stars)

Failures No More FEEDBACK EXPLAINS WHY SATELLITES ARE "MISSING"

Andrew Wetzel (arXiv:1602.05957)

Dark matter only simulation (dark matter)

+ baryons & feedback (dark matter)

Tidal destruction (e.g. Zolotov et al.) + Feedback-induced "dissipation"

600 kpc

+ baryons & feedback (stars)

Failures No More FEEDBACK SUPPRESSES STAR FORMATION AND DENSITIES

Wetzel + I. Escala (prep)

Thin Disks Emerge Naturally

Garrison-Kimmel et al., in prep

+ baryons & feedback (stars)

10 kpc

10 kpc

Thin Disks Emerge Naturally

Garrison-Kimmel et al., in prep

+ baryons & feedback (stars)

10 kpc

10 kpc

Halo Structure A NEW GENERATION OF MODELS FOR STELLAR STRUCTURE SURVEYS

0

Halo Structure A NEW GENERATION OF MODELS FOR STELLAR STRUCTURE SURVEYS

0

Where Does Feedback Fail?

Today

electrons & protons combine: Cosmic Microwave Background released

electrons & protons combine: Cosmic Microwave Background released

Dark Ages: first stars form (z~10-1000) Today (z~1000) (z~6-10)

electrons & protons combine: Cosmic Microwave Background released Re-ionization: starlight fills the Universe, can reach us

electrons & protons combine: Cosmic Microwave Background released

Re-ionization: starlight fills the Universe, can reach us

Simulating First Light (Re-ionization):

(Animation: T. Abel)

Simulating First Light (Re-ionization):

(Animation: T. Abel)

of photons emitted (how many stars)
(galaxy counts, re-emitted/absorbed H-alpha light)

of photons emitted (how many stars)
(galaxy counts, re-emitted/absorbed H-alpha light)

of photons *needed* (how much stuff is ionized) (CMB, Gunn-Peterson effect, Lyman-alpha forest)

of photons emitted (how many stars)
(galaxy counts, re-emitted/absorbed H-alpha light)

of photons *needed* (how much stuff is ionized) (CMB, Gunn-Peterson effect, Lyman-alpha forest)

(e.g. Robertson et al. 2015, 2016)

~20% must *escape* their galaxies

• Naively: form the stars, calculate where the light goes

Xiangcheng Ma (arXiv:1503.07880)

• Naively: form the stars, calculate where the light goes

Xiangcheng Ma (arXiv:1503.07880)

• Naively: form the stars, calculate where the light goes

Xiangcheng Ma (arXiv:1503.07880)

• Nothing escapes! $f_{\rm escape} \ll 0.1\%$

- Actually:
 - Stars destroy the cloud
 - Stars get "flung around" ("runaway stars")

Xiangcheng Ma (arXiv:1503.07880)

Star-forming cloud:

If stars were passive ("no feedback") Realistic (stellar winds & radiation included)

- Actually:
 - Stars destroy the cloud
 - Stars get "flung around" ("runaway stars")

Xiangcheng Ma (arXiv:1503.07880)

Star-forming cloud:

If stars were passive ("no feedback") Realistic (stellar winds & radiation included)

Xiangcheng Ma (arXiv:1503.07880)

Ionizing photon production rate: (from a stellar population)

Xiangcheng Ma (arXiv:1503.07880)

Ionizing photon production rate: (from a stellar population)

Xiangcheng Ma (arXiv:1503.07880)

Ionizing photon production rate: (from a stellar population)

Xiangcheng Ma (arXiv:1503.07880)

Ionizing photon production rate: (from a stellar population)

Xiangcheng Ma (arXiv:1503.07880)

Ionizing photon production rate: (from a stellar population)

Simulation: only ~1% escape!

Xiangcheng Ma (arXiv:1503.07880)

Ionizing photon production rate: (from a stellar population)

- Invariant to:
 - Resolution
 - Strength of feedback
 - Numerical methods
 - Star formation rates
 - IMF shape / sampling
 - Runaway stars

Simulation: only ~1% escape!

Other Mysteries? SOME PHYSICS IS MISSING HERE

Other Mysteries? SOME PHYSICS IS MISSING HERE

Other Mysteries? SOME PHYSICS IS MISSING HERE

unexpectedly massive black hole mergers

Other Mysteries? SOME PHYSICS IS MISSING HERE

unexpectedly massive black hole mergers

"mass-gainers": (stars more massive & longer-lived than they should be)

Xiangcheng Ma (arXiv:1601.07559)

Simulation: ~20% escape!

Binaries Work EXPLAIN THE MYSTERIES OF HIGH-REDSHIFT GALAXIES

Binaries Work EXPLAIN THE MYSTERIES OF HIGH-REDSHIFT GALAXIES

Xiangcheng Ma (arXiv:1601.07559)

(Animation: J. Wise)

Xiangcheng Ma (arXiv:1601.07559)

(Animation: J. Wise)

Xiangcheng Ma (arXiv:1601.07559)

(Animation: J. Wise)

Need Additional Physics To *Turn Off* Star Formation STELLAR FEEDBACK + COOLING = COOLING FLOW PROBLEM

• Virial shocks

- Virial shocks
- "Morphological Quenching"

- Virial shocks
- "Morphological Quenching"
- AGB Winds & SNe Ia

- Virial shocks
- "Morphological Quenching"
- AGB Winds & SNe Ia
- Magnetic Fields, Conduction

Xiangcheng Ma Robert Feldmann

- Virial shocks
- "Morphological Quenching"
- AGB Winds & SNe Ia
- Magnetic Fields, Conduction

Not Enough

Lumpiness Changes the Story

20 kpc

D. Angles-Alcazar in prep Lumpiness Changes the Story

20 kpc

D. Angles-Alcazar in prep

• "sweep up ISM" (molecular outflows), shock

Circinus

[0 III]/Helpho

1.4

Proga et al., Novak et al.

• "sweep up ISM" (molecular outflows), shock

Circinus

[0 III]/Helpho

1.4

Proga et al., Novak et al.

- "sweep up ISM" (molecular outflows), shock
- coupling? multi-phase winds & ISM, radiation lacksquarecooling? launch: disk? torus? NLR?

- "sweep up ISM" (molecular outflows), shock
- coupling? multi-phase winds & ISM, radiation \bullet cooling? launch: disk? torus? NLR?

- "sweep up ISM" (molecular outflows), shock
- coupling? multi-phase winds & ISM, radiation cooling? launch: disk? torus? NLR?
- rare! (luminous QSOs, duty cycle ~1%) phases: molecular gas timescale: ~10 Myr to ~few kpc HAPPENS BEFORE QUENCHING!!!!

No BAL Winds

With BAL Winds

Torrey et al. in prep $\dot{M}_{\text{launch}}(0.1 \text{ pc}) = 0.5 \,\dot{M}_{\text{BH}}$ $v_{\text{launch}}(0.1 \text{ pc}) = 10,000 \,\text{km/s}$

No BAL Winds

With BAL Winds

Torrey et al. in prep $\dot{M}_{\text{launch}}(0.1 \text{ pc}) = 0.5 \,\dot{M}_{\text{BH}}$ $v_{\text{launch}}(0.1 \text{ pc}) = 10,000 \,\text{km/s}$

Torrey et al. in prep

Torrey et al. in prep

Need to Link "Radio Mode" to Cosmological Evolution CAN YOU HEAT "GENTLY"?

Illustris & Eagle simulation papers

Need to Link "Radio Mode" to Cosmological Evolution CAN YOU HEAT "GENTLY"?

Illustris & Eagle simulation papers

Observed Starlight

Molecular

X-Rays

Star Formation

Observed Starlight

Molecular

X-Rays

Star Formation

Star formation is feedback-regulated

Feedback naturally predicts masses, KS law, scaling relations without fine-tuning

Molecular

X-Rays

Star Formation

- Star formation is feedback-regulated
 - Feedback naturally predicts masses, KS law, scaling relations without fine-tuning
- **>** There are no major astrophysical challenges to ΛCDM
 - Cusps to cores: no exotic dark matter needed!
 - Missing satellites, "too big to fail," thin disks, Tully-Fisher relation, flat rotation curves, etc — all fall out
 - Violent "burstiness" visible in abundances, SFHs, kinematics

Molecular

X-Rays

Star Formation

- Star formation is feedback-regulated
 - Feedback naturally predicts masses, KS law, scaling relations without fine-tuning

There are no major astrophysical challenges to ΛCDM

- Cusps to cores: no exotic dark matter needed!
- Missing satellites, "too big to fail," thin disks, Tully-Fisher relation, flat rotation curves, etc — all fall out
- Violent "burstiness" visible in abundances, SFHs, kinematics

AGN feedback is real and here to stay

- Fueling: gravitational instabilities, not Bondi (factor 100,000,000 wrong)
- Accretion disk winds & radiative feedback: *probably* the "quasar mode"
- Jets & cosmic ray bubbles: *probably* the "radio mode"

