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Add some fluid dynamics  
and chemistry, and go!
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Done!



Not so fast…



Problem:
WHY SO FEW GALAXIES & STARS?



Missing 
Physics!

Predicted:  
     Gravity +  
     Chemistry + 
     Dense Gas    Stars 
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Problem:
WHERE ARE THE “MISSING SATELLITES”?

Predicted structure
 (dark matter)

Observed
around us
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But we know what stars do!
(…well enough…)



Interstellar Medium: 
single, ideal fluid
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Winds?  
“sub-grid” (cheat a bit) 

- turn off cooling 
- throw out mass “by hand” 
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It Works!
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Matt Orr (in prep)
Hopkins+ 11,12,14

Agertz+14

No
Feedback

The KS Law is Predicted, Naturally, by Feedback
TOTALLY INDEPENDENT OF “SUB-GRID” SF MODEL

Observed



The KS Law: It’s Feedback. Matt Orr (in prep)
Hopkins+ 11,12,14

All Gas Molecular



Galaxy Scaling Relations: 

Xiangcheng Ma 
(arXiv:1504.02097)

Mass-Metallicity Relation

Denise Schmitz

Tully-Fisher & Size-Mass Relation

S. Muratov 
(arXiv:1501.03155)

Wind Scalings

Abundance Matching

R. Feldmann
(arXiv:1601.04704)

SF “Main Sequence”

(PFH)
M. Sparre  

arxiv:1510.03869 

LLS & DLA covering
Faucher-Giguere, 
 arXiv:1409.1919
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Sub-Grid is not Enough
PHASE STRUCTURE & OUTFLOW DETAILS MATTER

10 kpc lighter=hotter
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Insert Winds “By Hand” (Sub-Grid) Following Full Feedback

Proto-Milky Way: Gas Temperature:

PFH ‘14
M. Sparre

arxiv:1510.03869 

Sub-Grid is not Enough
PHASE STRUCTURE & OUTFLOW DETAILS MATTER

10 kpc lighter=hotter

No feedback

Sub-grid 
  winds

Resolved  
   Feedback



“Stirring” By Feedback = Most Dwarfs Don’t Rotate
OBSERVED+SIMULATED dIrr/dSph

DM only

C. Wheeler
arXiv:1504.02466
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K. El-Badry 
(arXiv:1512.01235)

Orbits “pumped up”
Radial “breathing” in each burst:

• If DM orbits perturbed,  
      stars are too!

Direct Consequences for Structure
BURSTY SF = STARS MIXED, JUST LIKE DM
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Radial migration:
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• Radial anisotropy
• Gradients “wiped out”
• Galactic radii oscillate

Direct Consequences for Structure
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Radial migration:

• If DM orbits perturbed, stars are too!
• Radial anisotropy
• Gradients “wiped out”
• Galactic radii oscillate

“puff up”

oldest stars  
formed here

end up 
here

metal-poor stars  
formed here

end up 
here

Direct Consequences for Structure
BURSTY SF = STARS MIXED, JUST LIKE DM



Predicts New Classes of Galaxies
ULTRA-DIFFUSE SYSTEMS: THE NEW “NORMAL”

FIRE Dwarf

K. El-Badry 
(arXiv:1512.01235)

+ TK Chan (prep)



It Gets Worse!
GALAXIES ARE NOT STEADY-STATE OBJECTS!

K. El-Badry 
(arXiv:1610.04232)
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Mass estimation: this matters
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Galaxy Metallicity Gradients 7

Figure 3. Top: face-on metallicity map for the three example galaxies in Figure 1. Bottom: Metallicity profile. The grey points show individual pixels, while
the red points and errorbars show the median and 1� dispersion of metallicity in 0.25–1R90. The blue lines show the best linear fit log(Z/Z�) = ↵R+�,
where ↵ gives the metallicity gradient in the disk (if there is one). In chaotic systems, excluding the central 0.25R90 makes little difference on measuring
the slope of metallicity gradient, since the metals are uniformly distributed within the galaxy. On the other hand, disk galaxies in the simulated sample show
rapidly rising metallicity profile toward the center due to heavy metal enrichment from bulge stars.

Figure 4. Left: Metallicity gradient vs stellar mass. Right: Metallicity gradient vs sSFR. The shaded regions show the 2� linear fit to the simulations. The blue
dashed lines show the linear fit to a compilation of observations given by Stott et al. (2014). There is weak dependence of metallicity gradient on both stellar
mass and sSFR, albeit both correlations are within 2� of being flat. Galaxies of low mass or high sSFR tend to have flat metallicity gradient, likely due to the
fact that feedback is more efficient in these galaxies.

2.3 Metallicity Gradient

In Figure 3, we present the face-on metallicity map (top panels) for
the three example galaxies in Figure 1. We use the mass-weighted
metallicity of all gas particles in each pixel. In the bottom panels,
we plot the metallicity as a function of projected radius for indi-
vidual pixels (grey points). Only pixels where the gas surface den-
sity is above ⌃g > 10M� pc�2 are considered. This surface density
threshold is motivated by the fact that it is about the threshold for

star formation to occur in these simulations (M. Orr et al., in prepa-
ration), so these pixels are likely to have observationally detectable
nebular emission lines. We then extract the metallicity profile in the
range of 0.25–1R90 by measuring the median metallicity and its 1�
dispersion at each radius (red points and errorbars in Figure 3). We
fit the metallicity profile by a linear function

log(Z/Z�) = ↵R+� (2)

c� 0000 RAS, MNRAS 000, 1–12
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“gravity-dominated” phase“feedback-dominated” phase

Transition from Feedback-Dominated to “Calm” (Gravity-Dominated)
BUILDUP OF METALLICITY GRADIENTS
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Xiangcheng Ma
(arXiv:1610.03498)
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Have we gone “Big Bang to Milky Way”?
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Failures No More
FEEDBACK EXPLAINS WHY SATELLITES ARE “MISSING”

Dark matter only simulation
(dark matter)

600 kpc

+ baryons & feedback
(dark matter)

+ baryons & feedback
(stars)

Andrew
Wetzel

(arXiv:1602.05957)

Tidal destruction (e.g. Zolotov et al.)
+ Feedback-induced “dissipation”
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Failures No More
FEEDBACK SUPPRESSES STAR FORMATION AND DENSITIES

Wetzel + I. Escala (prep)
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+ baryons & feedback
(stars)

The Latte Project: The Milky Way on FIRE 3

Figure 1. Face-on (left) and edge-on (right) image of stars in the Milky-Way-like host galaxy at z = 0. The image is a true-color
composite in three bands (u, g, r), using Starburst99 to determine the spectral energy distribution of each star particle given its age and
metallicity, and ray-tracing the line-of-sight flux, attenuating with a MW-like reddening curve assuming a constant dust-to-metal ratio.
The simulated host galaxy exhibits thin-disk morphology and spiral structure like the Milky Way. TO DO: add scale bar.

Figure 2. Stellar mass growth history of the Milky-Way-like
host galaxy. Solid blue curves shows Mstar of the main progeni-
tor at each simulation snapshot. Dashed orange curve shows the
star-formation history computed from all star particles within the
galaxy at z = 0. At z = 0, the host galaxy has Mstar(z = 0) =
9⇥ 1010 M� and SFR(z = 0) = 3.5M� yr�1. TO DO: add empir-
ically/observationally determined growth histories (Behroozi et al,
Patel et al).

the distributions measured for satellites around the MW
(dashed) and M31 (dotted).
The distribution of Mstar lies reasonably between that

of the MW and M31 down to Mstar & 3⇥ 105 M�. Our
most massive satellite has Mstar ⇡ 3 ⇥ 108 M�, compa-
rable to the SMC.
In addition to the stellar mass, �velocity,1D measures the

total dynamical mass within the stellar component and
provides a metrics that is directly comparable to observa-
tions. Our high spatial resolution allows us to measure

�velocity,1D directly, within the half-Mstar radius (typi-
cally, a few 100 to 1000 pc), in the same way as in obser-
vations. Thus, we are not subject to uncertainties from
extrapolating inner mass profiles or orbital anisotropies.
The distribution of �velocity,1D agrees well with that of
the MW down to �velocity,1D & 8 km s�1, especially the
strong up-turn at ⇡ 12 km s�1. (M31 contains signifi-
cantly more satellites than the MW at a essentially all
�velocity,1D.) One of our satellites has particularly low
�velocity,1D, though it looks to be in the process of dis-
rupting (check on this).
Figure 4 (top) shows the joint relation between

�velocity,1D and Mstar. Circles show simulated galax-
ies, while stars shows observed galaxies in the Local
Group. We also show isolated galaxies for comparison.
For both satellite and isolated galaxies, the �velocity,1D
at fixed Mstar agrees well with observations across the
dwarf Mstar range. Furthermore, as observed in nearby
dwarf galaxies, we do not find any significant o↵set be-
tween satellite versus isolated galaxies. This suggests
that environment plays little role in governing the inter-
nal structure of surviving dwarf galaxies at fixed Mstar.
In addition to mass and internal kinematics, we also

examine the chemical enrichment in our dwarf galaxies
via mass-metallicity relation. Figure 4 (bottom) shows
the iron abundance scaled to solar, [Fe/H], versus Mstar
for satellite and isolated dwarf galaxies. Stars show ob-
served values from Kirby et al. (2013). The simulated
galaxies exhibit a tight mass-metallicity relation, as ob-
served, with broadly similar slope. Furthermore, we
find no significant systematic di↵erence between satel-
lite and isolated dwarf galaxies, again as observed, de-
spite systematic di↵erences in star-formation histories.
The simulated galaxies do have somewhat lower [Fe/H]
than observations at low Mstar, although this could arise

Starlight (edge-on)

Garrison-Kimmel
      et al., in prep

4 Hopkins et al.

Figure 1. Mock HST images of two Milky Way (MW)-mass FIRE-2 simulated galaxies at z = 0 (m12i and m12f). Each is a u/g/r composite image, using
STARBURST99 to determine the SED of each star based on its age and metallicity and ray-tracing following Hopkins et al. (2005) with attenuation using
a MW-like reddening curve with a dust-to-metals ratio = 0.4. Surface brightness is shown with a logarithmic stretch. We show face-on (top) and edge-on
(bottom) images. Both form thin disks, with clear spiral structure. Note the clear dust lanes and visibly resolved star-forming regions. Properties of each galaxy
(and a complete list) are in Table 1.

whether the instantaneous star formation rate in the galaxy is “fast”
or “slow” (White & Frenk 1991; Kereš et al. 2009).

However, the observed Kennicutt-Schmidt (KS) relation im-
plies that gas consumption timescales are long (⇠ 50 dynamical
times; Kennicutt 1998, and GMCs appear to turn just a few per-
cent of their mass into stars before they are disrupted (Zuckerman
& Evans 1974; Williams & McKee 1997; Evans 1999; Evans et al.
2009). Observed galaxy mass functions and the halo mass-galaxy
mass relation require that galaxies incorporate or retain only a small

fraction of the universal baryon fraction in stars and the ISM (Con-
roy et al. 2006; Behroozi et al. 2010; Moster et al. 2010). Ob-
servations of the intergalactic medium (IGM) and circum-galactic
medium (CGM) require that many of those baryons must have
been accreted into galaxies, enriched, and then expelled in galac-
tic super-winds with mass loading Ṁwind many times larger than
the galaxy SFR (Aguirre et al. 2001; Pettini et al. 2003; Songaila
2005; Martin et al. 2010; Oppenheimer & Davé 2006), and indeed
such winds are ubiquitously observed (Martin 1999, 2006; Heck-
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+ baryons & feedback
(stars)

The Latte Project: The Milky Way on FIRE 3

Figure 1. Face-on (left) and edge-on (right) image of stars in the Milky-Way-like host galaxy at z = 0. The image is a true-color
composite in three bands (u, g, r), using Starburst99 to determine the spectral energy distribution of each star particle given its age and
metallicity, and ray-tracing the line-of-sight flux, attenuating with a MW-like reddening curve assuming a constant dust-to-metal ratio.
The simulated host galaxy exhibits thin-disk morphology and spiral structure like the Milky Way. TO DO: add scale bar.

Figure 2. Stellar mass growth history of the Milky-Way-like
host galaxy. Solid blue curves shows Mstar of the main progeni-
tor at each simulation snapshot. Dashed orange curve shows the
star-formation history computed from all star particles within the
galaxy at z = 0. At z = 0, the host galaxy has Mstar(z = 0) =
9⇥ 1010 M� and SFR(z = 0) = 3.5M� yr�1. TO DO: add empir-
ically/observationally determined growth histories (Behroozi et al,
Patel et al).

the distributions measured for satellites around the MW
(dashed) and M31 (dotted).
The distribution of Mstar lies reasonably between that

of the MW and M31 down to Mstar & 3⇥ 105 M�. Our
most massive satellite has Mstar ⇡ 3 ⇥ 108 M�, compa-
rable to the SMC.
In addition to the stellar mass, �velocity,1D measures the

total dynamical mass within the stellar component and
provides a metrics that is directly comparable to observa-
tions. Our high spatial resolution allows us to measure

�velocity,1D directly, within the half-Mstar radius (typi-
cally, a few 100 to 1000 pc), in the same way as in obser-
vations. Thus, we are not subject to uncertainties from
extrapolating inner mass profiles or orbital anisotropies.
The distribution of �velocity,1D agrees well with that of
the MW down to �velocity,1D & 8 km s�1, especially the
strong up-turn at ⇡ 12 km s�1. (M31 contains signifi-
cantly more satellites than the MW at a essentially all
�velocity,1D.) One of our satellites has particularly low
�velocity,1D, though it looks to be in the process of dis-
rupting (check on this).
Figure 4 (top) shows the joint relation between

�velocity,1D and Mstar. Circles show simulated galax-
ies, while stars shows observed galaxies in the Local
Group. We also show isolated galaxies for comparison.
For both satellite and isolated galaxies, the �velocity,1D
at fixed Mstar agrees well with observations across the
dwarf Mstar range. Furthermore, as observed in nearby
dwarf galaxies, we do not find any significant o↵set be-
tween satellite versus isolated galaxies. This suggests
that environment plays little role in governing the inter-
nal structure of surviving dwarf galaxies at fixed Mstar.
In addition to mass and internal kinematics, we also

examine the chemical enrichment in our dwarf galaxies
via mass-metallicity relation. Figure 4 (bottom) shows
the iron abundance scaled to solar, [Fe/H], versus Mstar
for satellite and isolated dwarf galaxies. Stars show ob-
served values from Kirby et al. (2013). The simulated
galaxies exhibit a tight mass-metallicity relation, as ob-
served, with broadly similar slope. Furthermore, we
find no significant systematic di↵erence between satel-
lite and isolated dwarf galaxies, again as observed, de-
spite systematic di↵erences in star-formation histories.
The simulated galaxies do have somewhat lower [Fe/H]
than observations at low Mstar, although this could arise

Starlight (edge-on)

Garrison-Kimmel
      et al., in prep

4 Hopkins et al.

Figure 1. Mock HST images of two Milky Way (MW)-mass FIRE-2 simulated galaxies at z = 0 (m12i and m12f). Each is a u/g/r composite image, using
STARBURST99 to determine the SED of each star based on its age and metallicity and ray-tracing following Hopkins et al. (2005) with attenuation using
a MW-like reddening curve with a dust-to-metals ratio = 0.4. Surface brightness is shown with a logarithmic stretch. We show face-on (top) and edge-on
(bottom) images. Both form thin disks, with clear spiral structure. Note the clear dust lanes and visibly resolved star-forming regions. Properties of each galaxy
(and a complete list) are in Table 1.

whether the instantaneous star formation rate in the galaxy is “fast”
or “slow” (White & Frenk 1991; Kereš et al. 2009).

However, the observed Kennicutt-Schmidt (KS) relation im-
plies that gas consumption timescales are long (⇠ 50 dynamical
times; Kennicutt 1998, and GMCs appear to turn just a few per-
cent of their mass into stars before they are disrupted (Zuckerman
& Evans 1974; Williams & McKee 1997; Evans 1999; Evans et al.
2009). Observed galaxy mass functions and the halo mass-galaxy
mass relation require that galaxies incorporate or retain only a small

fraction of the universal baryon fraction in stars and the ISM (Con-
roy et al. 2006; Behroozi et al. 2010; Moster et al. 2010). Ob-
servations of the intergalactic medium (IGM) and circum-galactic
medium (CGM) require that many of those baryons must have
been accreted into galaxies, enriched, and then expelled in galac-
tic super-winds with mass loading Ṁwind many times larger than
the galaxy SFR (Aguirre et al. 2001; Pettini et al. 2003; Songaila
2005; Martin et al. 2010; Oppenheimer & Davé 2006), and indeed
such winds are ubiquitously observed (Martin 1999, 2006; Heck-

c� 0000 RAS, MNRAS 000, 000–000

Thin Disks Emerge Naturally
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• “sweep up ISM” (molecular outflows), shock

• coupling? multi-phase winds & ISM, radiation  
cooling? 
launch: disk? torus? NLR?

• rare! (luminous QSOs, duty cycle ~1%)  
phases: molecular gas 
timescale: ~10 Myr to ~few kpc  
    HAPPENS BEFORE QUENCHING!!!!

Proga et al., Novak et al.
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Arav et al: outflows at ~10kpc
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Ø Star formation is feedback-regulated 
Ø Feedback naturally predicts masses, KS law, scaling relations without fine-tuning

Ø There are no major astrophysical challenges to    CDM
Ø Cusps to cores: no exotic dark matter needed!
Ø Missing satellites, “too big to fail,” thin disks,  

  Tully-Fisher relation, flat rotation curves, etc — all fall out
Ø Violent “burstiness” visible in abundances, SFHs, kinematics

⇤

baryonic
physics WDM &   

MOND

Ø AGN feedback is real and here to stay
Ø Fueling: gravitational instabilities, not Bondi (factor 100,000,000 wrong)
Ø Accretion disk winds & radiative feedback: probably the “quasar mode” 
Ø Jets & cosmic ray bubbles: probably the “radio mode” 






