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1 METHODS

Our simulations use GIZMO (?),1, and include full self-
gravity, adaptive resolution, ideal and non-ideal magneto-
hydrodynamics (MHD), detailed cooling and heating
physics, protostar formation, accretion, and feedback in the
form of protostellar jets and radiative heating, and main-
sequence stellar feedback in the form of photo-ionization
and photo-electric heating, radiation pressure, stellar winds,
and supernovae. A subset of our runs include explicit treat-
ment of the dust particle and cosmic ray dynamics as well
as radiation-hydrodynamics; otherwise these are included in
simplified form.

1.1 Gravity

All our simulations include full self-gravity for gas, stars,
and dust. The gravity solver in GIZMO is a heavily modi-
fied version of the Tree-PM method in GADGET-3 (?). Be-
cause this is a Lagrangian code, there is no fixed “spatial
resolution” for gas: gravitational force softenings scale adap-
tively (in a fully-conservative manner; see ?) with the inter-
particle separation and can (in principle) become arbitrarily
small (such that the assumed gas distribution determining
the gravitational forces at the resolution limit is identical to
the assumption in the hydrodynamic equations). Softenings
for star particles are set sufficiently small that they are al-
ways Keplerian, though we find no difference setting them
adaptively based on a “nearest neighbors” distance to sur-
rounding gas particles.

1.2 Fluid Dynamics

Our MHD simulations use the Lagrangian finite-volume
“meshless finite mass” Godunov method in GIZMO, which
captures advantages of both grid-based and smoothed-
particle hydrodynamics (SPH) methods. In ???? we con-
sider extensive surveys of test problems in both hydrody-
namics and MHD, and demonstrate accuracy and conver-
gence in good agreement with well-studied state-of-the-art
regular-mesh finite-volume Godunov methods and moving-
mesh codes (e.g. ATHENA & AREPO; ??), especially for
super-sonic and sub-sonic MHD turbulence and instabilities
such as the Hall MRI.

1.2.1 Turbulence

To reflect the turbulent formation and environment of re-
alistic clouds, we drive turbulence on the largest (box-size)
scales in the simulation. The driving follows ?, using the
method from ???: a small range of modes (wavelengths

1 A public version of this code is available at http://www.tapir.

caltech.edu/~phopkins/Site/GIZMO.html.

1/2 − 1 times the cloud diameter Lcloud) are driven as an
Ornstein-Uhlenbeck process in Fourier space, with the com-
pressive part of the modes projected out via Helmholtz de-
composition so that we can specify the ratio of compress-
ible and incompressible/solenoidal modes. Unless otherwise
specified we adopt pure solenoidal driving, appropriate for
e.g. galactic shear (so that we do not artificially “force” com-
pression/collapse), but we vary this. The specific implemen-
tation here has been verified in ????.

The driving specifies the large-scale steady-state (one-
dimensional) turbulent velocity σ1D ≡ 〈v2

turb, 1D〉1/2 and

Mach number M ≡ 〈(vturb, 1D/cs)
2〉1/2, where vturb, 1D is

an (arbitrary) projection (in detail we average over all
random projections). Unless otherwise specified, we initial-
ize our clouds on the linewidth-size relation from ?, with
σ1D ≈ 0.7 km s−1 (Lcloud/pc)1/2

1.2.2 Magnetic Fields

Unless otherwise specified all simulations include magnetic
fields. An initially constant mean-field B0 is evolved with
the turbulence so that runs begin with fully-developed tur-
bulent field structure. By default, we take |B0| = 10µGn

2/3
4

where n4 = 〈n0/104 cm−3〉 refers to the initial density of the
cloud (n0); the local fields quickly grow and saturate with

amplitudes 〈|B|2〉1/2 ∼ 60µGn
2/3
4 . We consider variations

in the mean field strength.

1.2.3 Non-Ideal Effects

By default, we solve the ideal MHD equations, but (option-
ally) include various non-ideal processes. These include:

(i) Non-ideal MHD: Ambipolar diffusion, Ohmic resi-
tivity, and the Hall effect: in dense, neutral gas non-ideal
MHD effects can be important. All three effects are always
integrated explicitly and treated self-consistently (for all
gas elements), with coefficients calculated on-the-fly inde-
pendently for all gas elements based on their temperature,
density, magnetic field strength, and ionization states of all
tracked ions and dust grains (accounting for the full grain
size spectrum, variable local dust-to-gas ratios, and locally
variable abundance patterns, and the details of the followed
local radiation and cosmic ray fields). For more details see
§ A1.

(ii) Spitzer-Braginskii conduction & viscosity: In
hot gas (generated by shocks and feedback), conduction and
viscosity can be important. We solve the fully anisotropic
conduction and viscosity equations as described in ?, us-
ing the standard (temperature, density, and ionization-state
dependent) Spitzer-Braginskii conduction and viscosity co-
efficients as detailed in ?. For details see § A2.

(iii) Passive scalar (metal) diffusion: Because our de-
fault hydrodynamic method follows finite-mass elements,
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micro-physical diffusion of passive scalars (e.g. metals) in a
turbulent ISM requires an explicit numerical diffusion term.
This is implemented following the standard diffusion opera-
tors in ?; for details see § A3.

Extensive tests of the numerical implementations of each
of these terms are presented in ?. We showed there that
the methods are higher-order accurate, fully conservative,
competitive with state-of-the-art fixed-grid methods (in e.g.
ATHENA), and can correctly capture the linear and non-
linear behavior of anisotropic-diffusion-driven instabilities
such as the magneto-thermal, heat-flux bouyancy-driven,
and Hall-magnetorotational instabilities. In contrast, histor-
ical implementations of these physics in SPH methods tend
to artificially suppress these instabilities (or can be numeri-
cally unstable).

1.2.4 Dust & Metals

Our simulations separately track 11 metal species as de-
scribed above for the cooling physics. We assume initially
uniform abundances, with total metal abundance Z and so-
lar abundance ratios. Enrichment from stellar winds and
supernovae, when they occur, follows (?): the appropriate
metal yields tabulated from ? are injected into the exact
same gas elements surrounding the star as the correspond-
ing mass, momentum, and energy. Unresolved metal diffu-
sion between gas elements can be optionally modeled as de-
scribed in § 1.2.3.

By default, we assume a constant dust-to-metals ratio,
giving dust-to-gas mass ratio fdg = 0.5Z, for computing all
dust-based quantities.

However, in a subset of runs, we explicitly model the
dust dynamics following ?. ???

1.2.5 Cosmic Rays

By default, we assume a uniform cosmic ray ionization rate
ζ = 10−17 s−1, which we can freely vary.

In a subset of runs, we explicitly model the cosmic ray
dynamics. ???

1.2.6 Radiation

???

1.3 Cooling & Heating Physics

The cooling physics here has been described in sev-
eral previous papers (?). Gas heating & cooling is
solved following a fully-implicit algorithm, as in ?.
Heating/cooling rates are computed explicitly including:
free-free, bound-bound, photo-ionization, recombination,
Compton, photo-electric, metal-line, fine-structure, molec-
ular, dust-gas collisional, cosmic ray, and hydrodynamic
(shocks/compression/expansion) processes. We separately
track 11 species (H, He, C, N, O, Ne, Mg, Si, S, Ca, Fe) as
well as dust and cosmic rays.

Ionization states and molecular fractions are computed
from CLOUDY simulations assuming collisional+photo-
ionization equilibrium, including the effects of a uniform

meta-galactic background (from ?) together with local ra-
diation sources (see feedback, below). We account for self-
shielding with a local Sobolev/Jeans-length approximation
(integrating the local density at a given particle out to a
Jeans length to determine a surface density Σ, then atten-
uating the flux seen at that point by exp (−κν Σ)); this ap-
proximation has been calibrated in full radiative transfer
experiments in ? and ?. At high densities the ionization is
dominated by cosmic rays: we therefore also self-consistently
compute the ionization state and grain charges following ?
(as described in § A1) for a mostly-neutral gas with a mix-
ture of electrons, ions, neutrals, cosmic rays, and dust grains,
and adopt this as our default when it yields a larger free
electron fraction.

High-temperature (> 104 K) metal-line excitation, ion-
ization, and recombination rates then follow ?. Free-free,
bound-free, and bound-bound collisional and radiative rates
for H and He follow ? with the updated fitting functions in ?.
Photo-electric rates follow ?, accounting for PAHs and local
variations in the dust abundance. Compton heating/cooling
(off the combination of the CMB and local sources) follows
? (allowing in principle for two-temperature plasma effects,
although these are not important here). Fine-structure and
molecular cooling at low temperatures (5− 104 K) follows a
pre-computed tabulation of CLOUDY runs as a function of
density, temperature, metallicity, and local radiation back-
ground (see ?). Collisional dust heating/cooling rates fol-
low ? with updated coefficients from ? assuming a mini-
mum grain size of 10 Å, and dust temperatures calculated
below. Cosmic ray heating follows ? accounting for both
hadronic and Compton interactions, with the cosmic ray
background estimated as described below. Hydrodynamic
heating/cooling rates (including shocks, adiabatic work, re-
connection, resistivity, etc.) are computed in standard fash-
ion by the MHD solver; this is incorporated directly into
our fully-implicit solution rather than being operator-split,
since operator-splitting can lead to large errors in tempera-
ture in the limit where the cooling time is much faster than
the dynamical time.

At sufficiently high densities, gas becomes optically
thick to its own cooling radiation. In simulations with ex-
plicit multi-frequency radiative transfer, described below,
this can be handled explicitly. In our default simulations,
however, we can accurately approximate the optically-thick
cooling limit following ? (the relevant approximations are
checked against exact results for proto-planetary disks in
???).2

2 Following ?, each gas element is treated as a midplane element
embedded in an optically thick slab with surface density Σslab

calculated according to our previous Sobolev approximation. We

assume it is in LTE, which relates the temperature change at
midplane to surface radiation by way of the optical depth, us-

ing the equations in Appendix A therein. To good approxima-
tion, the heating/cooling rate per element is “capped” at the

maximum value |dE/dt| = σ T 4
mid (Σslab/µ)−1/(1 + κR Σslab),

where T = Tmid is the element or “midplane” temperature, µ the
mean molecular weight, and κR the Rosseland mean opacity. We

calculate κR at low temperatures from the tables in ?; at high

temperatures (> 1500 K) we explicitly tabulate the Thompson,
molecular-line, H− ion, Kramers, and e− conductivity terms as

in ?.
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A 5 K temperature floor is enforced, although this has
no detectable effect on our conclusions.

1.4 “Protostellar” Sink Particles

Dense, self-gravitating gas can collapse below our resolution
limit, at which point it is treated via a standard sink-particle
approach; these sink particles represent accreting sites of
protostar formation and so act, in turn, back on the medium
from which they formed.

1.4.1 Sink Formation

Following ?, a gas resolution element (cell or particle) is con-
verted to a sink particle when it meets the following criteria:

(i) Self-gravitating: We require the cell is locally self-
gravitating. Specifically, ???

(ii) Local extremum: We only allow sink formation if
the particle is a local density maximum among its ∼ 32 near-
est neighbors. As shown in ?, this prevents spurious forma-
tion of multiple sink particles in a single resolution element
that should collapse to form one object. We have alterna-
tively considered requiring a local potential minimum, but
this adds considerable computational expense and gives in-
distinguishable results in our tests.

(iii) High-density: The gas must exceed a minimum
density n > nthreshold. We typically adopt nthreshold =
100n0.

(iv) Self-shielding: The gas must be shielded from am-
bient UV radiation so it can cool. We adopt the column-
density and metallicity-dependent threshold from ?; this is
trivially satisfied for almost all gas that meets our density
and self-gravity criteria.

(v) Jeans unstable: We require a Jeans mass ???
(vi) Converging flow: The local velocity divergence

(centered on the element) must satisfy ∇ · v < 0. This is
usually satisfied given the self-gravity criterion above but
prevents spurious sink formation in transient events.

(vii) No duplication: Sink formation is prohibited if
there is another sink particle within the resolution element
(i.e. within the radius including the nearest ∼ 32 gas ele-
ments).

If all of these criteria are met, a gas particle is instantly
converted into a sink particle, conserving mass.

1.4.2 Sink Growth

Once formed, sinks can grow via two accretion channels:

(i) Resolved Gravitational Capture: If a gas element
b is explicitly resolved and bound to the sink, it is imme-
diately captured by the protostar. We require (1) that the
element have velocity relative to the sink below the Kep-
lerian escape velocity |vb − vsink| < vesc(Msink, rb) where
rb ≡ |xb − xsink|; (2) that it be bound to the sink plus local
gas enclosed if we spread the mass in the particle such that
it forms an isothermal sphere around the sink: Ethermal, b +
EB, b + (mb/2) |vb−vsink|2 < 2GMsink/rb + 4πGρb r

2
b ; and

(3) that the apocentric radius of the orbit of b (assuming a
Keplerian test-particle orbit about the sink with the given
rb and |vb − vsink|) is less than twice the resolution scale
(the kernel search radius around the sink). If a gas element
b meets this criteria for more than one sink particle it is ac-
creted onto whichever dominates the local acceleration (i.e.
larger value of Msink/|xb − xsink|2).

(ii) Diffuse Accretion: If e.g. the initial protostellar
mass is small, it may be impossible to resolve accretion via
(i) above. We therefore estimate the accretion radius:

Racc ≡
GMsink

c2s + v2
A + 〈|vgas − vsink|2〉

(1)

where the surrounding gas properties (cs, ρ, 〈|vgas−vsink|2〉)
are computed via a kernel-weighted mean from the gas par-
ticles surrounding the sink. If the gas is smooth on sub-
resolution scales, then that within Racc is bound; so if Racc is
unresolved (smaller than the kernel search radius), we add a
continuous mass accretion following Bondi-Hoyle-Lyttleton
theory:

ṀBHL ≡ 4π ρR2
acc vff(Racc) (2)

The sink grows continuously by ṀBHL ∆t in a timestep ∆t,
algorithmically implemented following ?. Note that if Rracc

is resolved, this is in the regime where our “resolved gravita-
tional capture” method should correctly identify accretion,
so we set ṀBHL = 0.

(iii) Sink Mergers: ???

From Gravitational Capture to the Protostar:
The above criteria (i)-(ii) govern gravitational capture of
gas. Once captured, however, this is not immediately ac-
creted onto a protostar. We therefore divide the sink mass
into two components: Msink = Mps + Mdisk, a “proto-
star” mass Mps and a “reservoir” mass Mdisk (which rep-
resents some combination of accretion disk and unresolved
collapsing core). At sink formation, Mps = 0, and when-
ever Msink increases, the mass is added to Mdisk. We there-
fore require some prescription to transfer mass from Mdisk

to Mps. We have considered (i) instantaneous transfer ev-
ery timestep (no “reservoir”), (ii) constant Ṁps = c3s/G,
as long as Mdisk > 0, (iii) constant disk depletion rate
Ṁps = Mdisk/tdep with tdep ∼ 105 yr, (iv) infall at the
free-fall velocity Ṁps = Mdisk/tff(Racc), and (v) a ?-type α-
disk with some “effective viscosity,” following ? for gravito-
turbulent viscosity and assuming the disk is truncated where
Q < 1, giving Ṁps ∼ (Mdisk/tdep) (Mdisk/Msink)2. We find
the specific choice has little effect, except (i) gives artificially
“bursty” accretion which produces spurious noise in the dust
temperature; we adopt (v) as our default.

1.4.3 Protostellar Feedback from Sinks

(i) Jets: Protostars launch jets. We assume
???
(ii) Dust Heating: Radiation from protostars can heat

dust; to model this we require the luminosity L of each pro-
tostar, which we take as the maximum of the accretion (Lacc)
and/or pre-main sequence luminosity (Lpms). For protostars
above the Deuterium burning limit, Mps > 0.013M�, we
take Lacc = 5× 10−7 Ṁps c

2, which corresponds to the stan-
dard linear size-mass relation with Rps ∼ 5 (Mps/M�) (see
e.g. ?). Below the Deuterium burning limit, we include only
the gravitational energy released by surface accretion, as-
suming a constant Jupiter-density size-mass relation, giving
Lacc = 5 × 10−8 (Mps/MJ)2/3. To be conservative, we take
Lpms from a simple zero-age main sequence relation (likely
to under-estimate the luminosity for

accretion to the surface of a Jupiter-density
???
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(iii) Radiation Pressure:
???

1.5 “Star” Particles

1.5.1 Promotion

At the end of their pre-main sequence lifetime, we “pro-
mote” our proto-stellar particles to zero-age main sequence
(ZAMS) stars. The pre-main sequence lifetime is calculated
based on the Kelvin-Helmholtz time, with the simple toy
model described in Appendix ??. Directly using tabulated
fits to stellar evolution models from MESA gives a similar
result for our purposes. Roughly, the typical lifetimes scale
as ∼ 50 Myr (Mps/M�)−2.5.

At this point, accretion and protostellar jets are ter-
minated, we assume the remainder of the accretion disk is
dispersed, and the stars begin to follow standard stellar evo-
lution tracks.

1.5.2 Feedback

Stars act on the gas via several mechanisms:

(i) Dust Heating: The stars continue to heat dust; this
is followed in the same manner as in § 1.4.3. We assume each
star of mass M∗ emits blackbody radiation with luminosity:

L∗

L�
=



0 (m < 0.012)

0.185m2 (0.012 < m < 0.43)

m4 (0.43 < m < 2)

1.5m3.5 (2 < m < 53.9)

32000m (53.9 < m)

(3)

where m ≡ M∗/M�; we assume a size-mass relation R∗ =
R�m

β with β ≈ 0.738 to calculate the effective temperature
Teff(M∗).

(ii) Radiation Pressure: This also continues to act per
§ 1.4.3, but now using the ZAMS luminosity and spectrum.

(iii) Photo-Electric Heating: This is followed as in ?.
Given L∗ and Teff , we estimate the production of photons
from each star with energies X − Y ??? eV, and follow their
transport per § 1.2.6. This is used to define the local radi-
ation field seen by each dust grain, which determines the
heating rate following ?.

(iv) Photo-Ionization Heating: This is followed as in
?. Given L∗ and Teff , we calculate the ionizing photon pro-
duction rate Q from each star, and follow transport of these
photons per § 1.2.6. This is combined with the metagalactic
UV background as described in § 1.3 to self-consistently de-
termine the photo-ionization heating rate and gas ionization
state.

(v) Winds: ???? Stuff

Ṁwind

M� yr−1
= 2.34× 10−9 α (q K)1/α

q

(
L∗

L�

)7/8

m0.185 (4)

q ≡ (1− α) Γ

1− Γ
(5)

α ≈ 0.5 + 0.4 (1 + 16m−1)−1 (6)

where K ≈ 1/30 and the weak dependence of α on mass
are calibrated to observations and Γ = L∗/LEdd(M∗) is the
Eddington factor.

(vi) Cosmic Rays: Following ?, if we enable explicit
tracking of cosmic rays (§ 1.2.5), then whenever fast winds
(vwind > 500 km s−1, though the exact choice is not impor-
tant) and/or SNe are coupled to gas surrounding a star, we
assume a fixed fraction = 10% of the kinetic energy goes
into the cosmic ray component.

(vii) Supernovae: SNe are implemented following ?.
If a star with M∗ > 8M� reaches the end of its
main-sequence lifetime (simply estimated as tMS ≈
9.6 Gyr (M∗/M�) (L∗/L�)−1), it explodes. The entire re-
maining mass goes into ejecta (i.e. we ignore relics), with
kinetic energy 1051 erg, and metal yields calculated from ?.
The detailed coupling is numerically identical to that for
winds.

APPENDIX A: NON-IDEAL FLUID TERMS

A1 Non-Ideal MHD

Astrophysical non-ideal MHD includes Ohmic dissipation,
the Hall effect, and ambipolar diffusion. All appear as diffu-
sion operators in the induction equation; if we operator-split
the ideal MHD term (already solved in GIZMO), we have

dB

dt
= −∇×

[
ηO J + ηH

(
J× B̂

)
− ηA

(
J× B̂

)
× B̂

]
(A1)

where J = ∇ × B. The diffusivities ηO,H,A govern Ohmic
resistivity, the Hall effect, and ambipolar diffusion, respec-
tively, and are given by the general expressions:

ηO ≡
c2

4π

1

σO
(A2)

ηH ≡
c2

4π

σH
σ2
H + σ2

P

(A3)

ηA ≡
c2

4π

[
σP

σ2
H + σ2

P

− 1

σO

]
(A4)

σO ≡
e c

B

∑
j

nj |Zj |βj (A5)

σH ≡
e c

B

∑
j

nj Zj
1 + β2

j

(A6)

σP ≡
e c

B

∑
j

nj |Zj |βj
1 + β2

j

(A7)

βj ≡
|Z|j eB
mj c νj

(A8)

where σO,H, P are the Ohmic, Hall, and Pedersen conduc-
tivities, the index j sums over the different relevant species
in the fluid (here ions, electrons, neutrals, and dust grains,
e, i, n, g, respectively), Zn = 0, Ze = −1, Zi = +1 and Zg
are the mean neutral/electron/ion/grain charges, mn, e, i, g

the electron/ion/grain mass (mn = µmp is calculated us-
ing the appropriate mean molecular weight µ for the ele-
ment abundances, temperature, and molecular fraction de-
termined in the cooling chemistry, and mg = (4π/3) a3

g ρ̄g
with ag the grain radius and ρ̄g the internal grain material
density), nn, e, i, g the number density of each species (with
mean number density n = ρ/(µmp) and ng = mn fdg n/mg

with fdg the dust-to-gas ratio by mass), mp is the proton
mass, e the electron charge, c the speed of light, and B = |B|
the magnitude of the magnetic field.
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At the densities and temperatures of interest, the colli-
sion frequencies νe, i, g are given by:

νe = 0.051ne T
−1.5
100 cm3 s−1 (A9)

+
ρn
[
5.15T 0.65

100 + 1.06T 0.5
100

]
109 (mn +me)

cm3 s−1

νi = 0.051
ρe
ρi
ne T

−1.5
100 cm3 s−1 (A10)

+

ρn

[
1.91

(
mp

µi−H2

) 1
2

+ 0.31
(

mp

µi−He

) 1
2

]
109 (mn +mi)

cm3 s−1

νg =
π a2

g δgn ρn

(mn +mg)

(
128 kBT

9πmn

)1/2

(A11)

where the terms in νe and νi represent electron-ion,
electron/ion-H2, and electron/ion-He collisions, respectively,
with assumed H, He abundances ≈ 0.76, 0.24 (changing this
has negligible effects), and T100 ≡ T/100K; in νg, δgn ≈ 1.3
is the Epstein coefficient for spherical grains (?).

We follow ? and assume the grains have a non-evolving
size distribution, and that the system obeys global charge
neutrality and local ionization equilibrium: this allows us to
calculate

Zg ≡ −ψ
ag kB T

e2
(A12)

ψ = α

(
exp (ψ)− (mi/me)

1/2

1 + ψ

)
(A13)

α ≡
ζ e2 m

1/2
e m2

g

(8π)1/2 a3
g f

2
dg (kBT )3/2 m2

n n
(A14)

ni =
ζ n

kig ng
(A15)

ne =
ζ n

keg ng
(A16)

kig ≡ π a2
g

(
8 kB T

πmi

)1/2

(1 + ψ) (A17)

keg ≡ π a2
g

(
8 kB T

πme

)1/2

exp (−ψ) (A18)

where kB is the Boltzmann constant, T is the gas kinetic
temperature, kig, eg are the coefficients for ion-grain and
electron-grain collisions respectively.

For the grains, we assume an effective size ag = 0.1µm,
material density ρ̄g = 3 g cm−3 (typical of both silicate
and carbonaceous grains), and constant dust-to-metals ra-
tio fdg = 0.01 (Z/Z�). For reasonable values, these choices
only weakly influence the coefficients ηO,H,A, compared to
the values of n, T , and ζ. We assume that at low tempera-
tures and high densities, the ions are dominated by Mg, so
mi = 24.3mp (at high temperatures, lighter ions become im-
portant, but this only changes the diffusivities where they
are dynamically irrelevant; explicitly assuming mi = mp

above 200 K, for example, we obtain identical conclusions).
This completely determines the non-ideal MHD coefficients,
given the MHD state of the gas and ζ.

A2 Spitzer-Braginskii Viscosity and Conduction

As detailed in ?, the implementation of Spitzer-Braginskii
viscosity and conduction in GIZMO adds the following addi-
tional energy and momentum fluxes to the standard MHD

equations:

FSBe = κ B̂
(
B̂ · ∇u

)
+ Π · v (A19)

FSBp = Π ≡ 3 νK [K : (∇⊗ v)] (A20)

K ≡ B̂ ⊗ B̂ − 1

3
I (A21)

κ =
0.96 (kBT )5/2

m
1/2
e e4 ln Λ

(1 + 4.2 `e/`T )−1 (A22)

ν =
0.406m

1/2
i (kBT )5/2

(Zi e)4 ln Λ
(1 + 4.2 `e/`T )−1 (A23)

where ⊗ denotes the outer product, B̂ is the direction of
the magnetic field vector, I is the identity matrix, v the
velocity, u the specific internal energy, : denotes the double-
dot-product (A : B ≡ Trace(A · B)), ln Λ ≈ 37.8 is the
Coulomb logarithm (?), `e is the electron mean-free path,
and `T = T/|∇T | is the temperature gradient scale length.
In these equations, κ is the conductivity, and ν the viscosity
(with Π the viscous tensor). Details of the coefficients are in
(Su et al., in prep.).

A3 Turbulent Diffusivity

In some “sub-grid” models for turbulence, the effects of un-
resolved eddies are treated as diffusion processes. Following
?, we can approximate the “eddy diffusivity” as

D ≡ (C ∆x)2 ‖S‖ (A24)

where C ≈ 0.15 is a constant calibrated to numerical sim-
ulations in ?, ∆x is the grid scale (for our MFM method,
this is equal to the rms inter-element spacing), and S ≡
[(∇ ⊗ v) + (∇ ⊗ v)T ] − Trace(∇ ⊗ v)/3 is the symmetric
shear tensor.

With this enabled, we can treat sub-grid diffusion of
internal energy and momentum using our standard conduc-
tion and viscosity equations but adding this “turbulent dif-
fusivity” to the physical conductivity and viscosity. Passive
scalars, in particular metals, are also diffused, even where
there is no mass flux, with ∂Z/∂t = −∇ · (D∇Z). Since
the abundance of ions and electrons is determined every
timestep from the element MHD properties assuming local
equilibrium, we do not need to explicitly treat their diffu-
sion.

APPENDIX B: DUST DYNAMICS

In ???, we describe in detail the numerical implementation
and algorithmic as well as physical tests of explicit dust dy-
namics. Briefly, the dust is treated as a collection of “super-
particles,” each one of which represents a collection of grains
of similar size whose trajectory is explicitly integrated in the
code according to the equations of motion for grains of that
size. We explicitly include drag, Lorentz, radiation pressure,
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and gravitational forces, i.e.

dvg
dt

= adrag + aLor + arad + agrav (B1)

adrag = − (vg − ugas)

ts
(B2)

ts ≡
π1/2

81/2

ρ̄g ag
cs ρgas

[(
1 +

9π s2

64

) 1
2

+
αc (ni/n)

1 + 4 s3

3π1/2

]−1

aLor =
Zg e

mg c
(vg − ugas)×B (B3)

arad =
π a2

g Q̃

mg c
Frad (B4)

where dvg/dt is a Lagrangian derivative, vg the grain veloc-
ity, ug the gas velocity, s ≡ |vg − ugas|/cs, Zg is the grain
charge (determine as described in § A1), Frad the net inci-
dent radiation flux (computed as described in the text), and
Q̃ is the dimensionless, flux-integrated absorption efficiency
which we take to be unity for simplicity. The second term in
ts accounts for Coulomb interactions (with αc ≈ 11.2 from
?); we include it for completeness but it is only important at
temperatures T � 104 K. The gravitational force agrav (and
self-gravity from dust) is treated identically to our other
particle types.

We do not explicitly follow grain formation, destruc-
tion, or size evolution, since these are both highly uncertain
and, in most models, produce evolution on longer timescales
than we are interested in here. However we will study how
the grain dynamics can modify these evolution equations
on longer timescales. Dust-dust collisions are always sub-
dominant to dust-gas drag in the dynamics equations for
the dust (although they can be important for dust size evo-
lution). And we ignore back reaction from the dust on the
gas, which is only important when the local dust-to-gas ratio
exceeds unity.

We assume a constant grain material density ρ̄g =
3 g cm−3 and populate a grain size distribution from ∼
0.1 − 10µm. Smaller grains are very tightly coupled and
we assume they move with the gas.

APPENDIX C: COSMIC RAYS

A detailed series of papers on our numerical treatment of
CRs and their consequences for galaxy and star formation
will be the subject of future work (in preparation). Here
we briefly outline the key physical equations being solved,
as, for our implementation here, these have all appeared in
previous work.

CRs are approximated as a single-species, ultra-
relativistic (γcr = 4/3) fluid. In the code we evolve the con-
served variable Ecr, i, the total CR energy associated with
particle i. We follow ?? in our implementation, with some
significant improvements. Following ?, the evolution equa-

tion for the CR energy density ecr is

∂ecr
∂t

=(v + vst) · ∇Pcr −∇ · [(v + vst) (ecr + Pcr)]

+∇ · [vdi ecr]− Γcr + ė∗ (C1)

Pcr = (γcr − 1) ecr (C2)

vst = −
(
c2s + v2

A

)1/2
B̂

(
B̂ · ∇Pcr
|∇Pcr|

)
(C3)

vdi = κdi B̂

(
B̂ · ∇ecr
ecr

)
(C4)

Γcr = 7.51× 10−16 s−1ecr (1 + 0.22 ñe)
( nH

cm−3

)
(C5)

κdi ∼
vcr rg

3

B2
coherent

B2
random(rg)

(C6)

∼ 3R
1/3
GV × 1028 cm2

s

(
µG

|B|

) 1
3
(
Ldrive

kpc

) 2
3

where Pcr is the CR pressure, v is the gas speed, vst is
the CR streaming speed, cs the sound speed, vA the Alfven
velocity (so |vst| scales as cs when vA � cs and vA when
cs � vA), B̂ = B/|B| where B is the magnetic field vector,
vdi is a diffusion speed with κdi the CR diffusion coefficient.

The first terms here includes advection and adiabatic
effects; advection with gas follows trivially from our La-
grangian code; adiabatic CR compression/expansion, and
work done on the gas, are accounted for self-consistently in
the Riemann problem. The streaming terms account for the
CR streaming instability; in this form the streaming terms
resemble a diffusion equation and we solve them as such.
Note that the vst ·∇Pcr term represents heating due to self-
excited waves that are rapidly damped in the plasma, which
produce an energy loss from the CRs which we assume is
rapidly thermalized so is added as a gas-heating term.

The diffusion coefficient κdi is more uncertain; we have
also considered adopting a simple constant, Milky Way-like
value of κdi ∼ 3×1028 cm2 s−1, and find this makes no differ-
ence to our major conclusions. This is not surprising given
that CRs do not qualitatively alter our results or appear to
dominate the feedback. But for our default we use the stan-
dard turbulent diffusivity; here Bcoherent and Brandom(rg)
represent the coherent mean B-field and random compo-
nent on the scale rg of the gyro radius of CRs; assuming
vcr ∼ c, a constant RGV ∼ 1 magnetic rigidity in giga-
volts (which determines rg), and a Kolmogorov spectrum
for B2

random with driving scale of order the pressure gradi-
ent scale length (Ldrive ∼ P/|∇P |), we obtain the second
expression for κdi, which is used in the simulations here.

Γcr is the loss rate of CRs to gas and radiation, here
from ? including combined hadronic plus Coulomb losses;
nH is the hydrogen number density and ñe is the number
of free electrons per hydrogen nucleus. Following their es-
timate, 1/6 of the hadronic losses and all of the Coulomb
losses are assumed to be thermalized and appear as a gas
heating term. This makes it clear how ecr is directly re-
lated to the cosmic ray ionization rate ζ defined in the text
and needed for ionization calculations: for our definitions
ζ ≈ 10−17 s−1 [ecr/1.3 eV cm−3]. Finally, ė∗ represents in-
jection via stellar feedback (described above).

Note that the equations here include the proper cou-
pling of the CRs to magnetic fields. Unlike many previous
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studies, we include this and solve the fully anisotropic diffu-
sion equations. A detailed comparison of numerical methods
for anisotropic diffusion in mesh-free codes is in preparation,
but the results in GIZMO agree very well, on all tests, with
those from ATHENA.

APPENDIX D: LUMINOSITIES

D1 Protostars

The moment a sink particle is formed, a “protostar” of zero
mass and zero size is created at its center. The protostar then
evolves continuously to higher masses and non-zero sizes as
it accretes mass from the “reservoir” (described in the text)
of mass which has been swallowed by the sink.

Each such protostar begins on the Hayashi track. The
mass evolves only via accretion. The size evolves according
to a combination of accretion and contraction. If the star is
accreting sufficiently rapidly, it will increase in radius owing
to the new material – however as soon as accretion slows
down, contraction takes over. For simplicity, on the Hayashi
track (neglecting accretion) we assume contraction at con-
stant effective temperature. Eventually the star contracts
to a radius Rcrit, where it reaches the Henyey track, from
which point it contracts at approximately constant luminos-
ity. Eventually it contracts to the zero-age main sequence
(ZAMS) size, at which point we “promote” the proto-star
(sink) to a zero-age “star.”

At any point during the protostellar phase, the lumi-
nosity is the sum of accretion & internal luminosities:

Lps ≡ Lacc + Linternal (D1)

where the accretion luminosity is given by

Lacc ≡ εr Ṁps c
2 (D2)

εr =

{
5× 10−7 (m ≥ 0.012)

5× 10−8 (Mps/MJ)2/3 (m < 0.012)

m ≡Mps/M�

and the internal luminosity depends on whether the proto-
star is on the Hayashi track

Linternal =

{
LHayashi (Rps > Rcrit)

LHenyey (Rps ≤ Rcrit)
(D3)

LHenyey ≈ LZAMS(Mps) (D4)

LZAMS

L�
=



0 (m < 0.012)

0.185m2 (0.012 < m < 0.43)

m4 (0.43 < m < 2)

1.5m3.5 (2 < m < 53.9)

32000m (53.9 < m)

LHayashi ≈ LKH = 0.226L�

(
Rps

R�

)2

m0.55 (D5)

Rcrit ≡ Rps[LHayashi = LHenyey |m] (D6)

The luminosity at each time is taken to be a blackbody
with effective temperature T 4

eff = Lps/(4π σB R
2
ps).

The protostellar radii are evolved explicitly for each pro-
tostar, according to contraction and new accretion (where
the new material comes in with large radius):

Ṙps = − Rps

tc(Rps, ...)
+ (R0 −R)

Ṁps

Mps
(D7)

where R0 is an arbitrary (large) initial radius (which has
almost no effect on our results, since so long as it is large,
initial contraction of new material is very fast), taken to
be R0 ≡ 100R�m, and tc is the contraction time. On the
Hayashi track (Rps > Rcrit), we assume contraction at con-
stant effective temperature, Teff = 4000 Km0.55, and on the
Henyey track (Rps ≤ Rcrit), contraction at constant lumi-
nosity LHenyey, giving:

tc =

80.21 Myrm1.45 r−3
ps (Rps > Rcrit)

18.15 Myrm2 r−1
ps

(
L�

LHenyey

)
(Rps ≤ Rcrit)

(D8)

rps ≡ Rps/R�

We consider the proto-star to reach the main-sequence
“ignition” radius (where contraction should halt) when we
reach the radius rps ≤ m0.8 for m < 1 or rps ≤ m0.57 for
m ≥ 1. At that point we promote the proto-star to a “star.”

D2 Main-Sequence Stars

Once on the main sequence, stars are not allowed to accrete,
and are assigned a luminosity L∗ = LZAMS (Eq. D4).
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