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ABSTRACT
Description of some code-details aspects of the radiation-hydrodynamics (RHD) module implementation, in the code
GIZMO. Please make sure you have read the discussion in the User Guide about the compile-time flags and physics
options for RHD before reading this, otherwise the options will not make sense. Also the User Guide has appropriate
citation information for anyone using these modules.
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1 EQUATIONS

The RHD implementations in GIZMO all attempt to solve the RHD
equations in the usual mixed-frame approximation where the spe-
cific intensity is measured in an Eulerian frame (the “lab frame” or
“simulation frame”) while the radiation-matter interaction terms are
computed in a frame co-moving with the fluid (Mihalas & Mihalas
1984; Lowrie et al. 1999), with the assumption that the flow is non-
relativistic so we keep terms up to O(v2/c2). In what follows, all
radiation quantities should be understood to be defined at a given
specific frequency ν (e.g. I = Iν , er = er,ν = der/dν, κ = κν ) or
(equivalently) integrated over an infinitesimally small frequency bin
(so that we can make the locally-grey approximation over the width
of the bin): we discuss this further below. For convenience, we will
drop the subscript ν on all quantities but take it to be understood.
With these terms the gas equations become:

∂(ρu)

∂t
+ ... =

∑
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(ψa +ψs)gr +
ũ
c̃2 (ėabs− ėem) (1)
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where the “...” terms refer to all the other (non-radiation) terms in
the gas momentum and energy equations; t is time and the partial
derivatives ∂ are defined in the Eulerian frame; (ρ, u, eg) are the gas
density, simulation-frame velocity, and total energy, ũ ≡ (c̃/c)u,
and we define:

ψa, s ≡
σa, s

c̃
=
ρκa, s

c̃
(3)

ėabs = c̃2ψa er (4)

ėem = c̃2
∫
ψa jem

ν dΩ = c̃2ψa 4π 〈 jem
ν 〉 (5)

gr ≡ fr− ũ · (erI+Pr) (6)

er ≡
∫

Iν dΩ = 4π Jν (7)

fr ≡ c̃
∫

n Iν dΩ = 4π c̃Hν =
c̃
c

Fr (8)

Pr ≡
∫

n⊗n Iν dΩ = 4πKν ≡ er D (9)

where er is the radiation energy density, f and F are the “effective”
and “true” radiation fluxes, and Pr is the radiation pressure tensor
(with D the dimensionless “Eddington tensor” and I the identity
tensor), each defined as moments of the intensity as above (⊗ is the
outer product). The ψ terms are given in terms of σa, s and κa, s, the
absorption and scattering coefficients or opacities, respectively. Be-
cause the radiation terms are “per frequency,” the total contribution
to the gas momentum and energy equations should be integrated or
summed over all frequencies.

The radiation intensity equation, at a specific ν, assuming the

absorption and scattering coefficients are isotropic (for now), is:
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+ 3n ·βψa
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)
+ n ·β (ψa +ψs)(Iν + 3Jν)−2ψs β ·Hν

− (ψa−ψs) β · {β · (JνI+Kν )}

where β ≡ u/c. Note that for convenience in these notes we absorb
one factor of c̃ into the definition of intensity (the more common
convention would be to define Iν → c̃ Iν here) – this is just an arbi-
trary normalization convention chosen, as it makes the conservative
quantity in Iν (number of photons per unit volume propagating in a
given direction) more obvious. Taking the first and second moments
of the intensity equation, we have:

∂er

∂t
+∇· f = (ėem− ėabs) + (ψa−ψs) ũ ·gr (11)
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In all of the above, we denote the true speed of light as c, while
c̃ represents the (optional) “reduced” speed of light (RSOL) which
can be used in the code.1 Reducing the speed of light allows the
timestep to increase proportionally.

Following Mihalas & Mihalas (1984); Stone et al. (1992),
an equivalent form of the radiation moments equations in the La-
grangian frame, accurate to leading order in O(v/c) in all relevant
(streaming/diffusion) limits is given by:

ρ
D
Dt

(
e′r
ρ

)
+∇· f′r =

(
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ρ

c̃2

D
Dt

(
f′r
ρ

)
+∇·P′r =−(ψa +ψs) f′r (14)

We solve the equations for er and fr as other quantities in the code
snapshots are lab-frame, however we use this to note that we can
solve Eqns. 11-12 in the comoving frame between cells in conser-
vative form without loss of accuracy by taking:
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− ∇· (ũ Iν)
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1 The various terms in c̃ versus c are described in Skinner & Ostriker (2013).
They are constructed so that, in local steady-state, the radiation energy er and
flux Fr , and the heating and momentum flux onto gas, all take on exactly
their “true” values (those they would have with c̃ = c), independent of c̃.
These terms are especially important in the tight-coupling limit. We also
extend the treatment in Skinner & Ostriker (2013) to one-order higher in
O(v/c), which includes the “beaming” terms in ũ/c̃2. Note that the “total”
momentum and energy (eg + er) do not appear to be naively conserved for
c̃ 6= c: this is because the photon energy injection rate is lower than the
“true” value by a factor c̃/c, so the conserved quantity should instead follow
eg+(c/c̃)er in steady-state (and likewise for the gas+radiation momentum).
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which allows us to re-write the conservative equations in a particu-
larly useful form, given in Appendix A.

2 METHODS

In GIZMO, we solve the equations above with one of several meth-
ods, set by different compile-time flags as described below:

(i) RT_LOCALRAYGRID solves the intensity equation Eq. 10 di-
rectly. This is “exact” radiation transport. The intensity is solved on
a grid in space (using the gas cells as the grid), in angle, with the
number of angular bins set to 4N (N + 1) where N is the value of
RT_LOCALRAYGRID. The methodology is based on Jiang et al.
(2014). In principle, this can accurately handle any RHD regimes.
This imposes a timestep . ∆x/c̃, and expense scales with number
of rays.

(ii) RT_LEBRON solves a simplified approximate version of the
intensity equation Eq. 10. The gas-radiation coupling terms are
treated in an angle-and-space-averaged fashion within the kernel
around the emission source and absorption source, directly ray-
traced assuming optically thin transport in between (so it ignores
shadowing and angular collimation of radiation, as well as diffu-
sive limits). The methods are described in Hopkins et al. (2018,
2019). This is most useful for point sources in a mostly-optically-
thin medium (by volume); it assumes an infinite speed-of-light (ray-
tracing limit) and is solved in the gravity solver, imposing no new
timestep constraint.

(iii) RT_M1 solves the coupled radiation energy and flux mo-
ments equations Eq. 11-12, but not the intensity Eq. 10. This means
one must assume a form of P or D to close the system. This uses the
usual M1 closure (Levermore 1984):

D→ DM1 =

(
1−χ

2

)
I+

(
3χ−1

2

)
f̂⊗ f̂ (16)

χ≡ 3 + 4ξ2

5 + 2
[
4−3ξ2

]1/2 , ξ ≡ |Fr|
cer

(17)

This interpolates between an advective flux in the optically thin
regime and a diffusive isotropic flux in the thick regime. The scheme
can handle shadowing and is computationally efficient, but the fluid
approximation (closing the moments equations at second order, in-
stead of solving for all angles n) means certain limits, such as col-
liding rays, cannot be accurately handled. This imposes a timestep
. ∆x/c̃.

(iv) RT_FLUXLIMITEDDIFFUSION solves just the radiation
energy equation Eq. 11, in the usual flux-limited diffusion (FLD)
limit (Levermore 1984). The system is closed by assuming (1)
an isotropic Eddington tensor D = I/3, and (2) that the term
c̃−2 ∂fr/∂t→ 0 in Eq. 12 – i.e. the flux equation has reached a local
steady-state solution, giving the solution:

fr → fFLD
r =− ∇·Pr

ψa +ψs
+ ũ · (er I+Pr) +

ũ(ėem− ėabs)

c̃2 (ψa +ψs)
(18)

It is well-known that this can lead to super-luminal transport in
the optically-thin limit, so to prevent this, we actually take fr =
λFLD fFLD

r where λFLD is a dimensionless flux-limiter with the form:

λFLD ≡
3(2 + ξ)

6 + 3ξ+ ξ2 , ξ ≡ |F
FLD
r |

cer
(19)

This being a diffusion problem it imposes a timestep . ∆x2κρ/c̃.
Note that some simpler FLD implementations in the literature keep
just the ∇·Pr part of fr: however that would give the wrong solu-
tions in the tightly-coupled limit (where FLD should otherwise be
most accurate).

(v) RT_OTVET makes the identical assumptions to FLD for fr

and fFLD and the slope-limiter λFLD, except D is replaced with the
Eddington tensor Dthin (normalized to unity trace) given by assum-
ing an optically-thin flux (∝ Li r̂i j/r2

i j for source luminosity Li at
source i at distance ri j from gas element j) from all sources as if they
are point sources (akin to RT_LEBRON), as described in Gnedin &
Abel (2001). This imposes a timestep . ∆x2κρ/c̃.

3 INPUTS IN THE CODE

To fully-determine the RHD equations in § 1, we need to specify (1)
the speed of light c̃, (2) the band[s] or wavelength[s] being solved,
(3) the corresponding emission/sources ėem in each band, and (4)
the absorption and scattering opacities κa, s.

(i) Speed-of-light: The compile-time parameter
RT_SPEEDOFLIGHT_REDUCTION defines the dimension-
less value c̃/c. This must be > 0 and ≤ 1 or unphysical behavior
will result. If not defined, we default to c̃ = c. The usual “rule of
thumb” is this must be set faster than other relevant speeds in the
problem, so e.g. advection does not “outpace” light travel.

(ii) Bands: These are discussed below. GIZMO allows you to
modularly mix-and-match different wavelengths and bands for
the RHD, via compile-time flags (e.g. RT_OPTICAL_NIR and
many others), or add your own. If you wish to add a new
band, you must add the relevant code in a couple places: first in
allvars.h define the band compile-time flag and which fre-
quency “bin” it will use: follow the template of existing bands like
RT_OPTICAL_NIR. Then you must at a minimum add code to
two places in rt_utilities.c, as described below: the source
luminosity/emissivity ėem, and the opacities κa, s for that band.

(iii) Sources: The function rt_get_source_luminosity
in the file rt_utilities.c defines the source func-
tions/luminosities/emissivities for every waveband, for each
resolution element i. The pre-built wavelengths each have their
own block within this code: follow their template if you are
adding a new band. Note that this handles both gas emissivity
(the ėem above) but also any other source of luminosity from
non-gas elements in the simulation: you can add emission from
point-sources like stars or compact objects (star/black hole/sink
particles), annihilation (dark matter or collisionless particles),
particulates or PIC particles (dust grains/cosmic rays), etc. These
will be appropriately added to the radiation fields and equations-of-
motion. Note that because of the finite-volume solver, you need to
specify the volume or mass-integrated luminosity of element i, i.e.
Lem, i ≡

∫
Ωi

ėem d3x =
∫

i(ėem/ρ)dm. If you are using sources other
than gas, be sure to set RT_SOURCES at compile time to allow
those sources to radiate. See User Guide for custom options for
source injection, etc.

(iv) Opacities: The opacities κa, s are specified in two func-
tions in rt_utilities.c. First, the total extinction opacity
κt ≡ κa + κs is specified in the function rt_kappa. This is
an opacity (cross-section per unit mass). Second, the difference
between absorption and scattering is specified in the function
rt_absorb_frac_albedo. This specifies the dimensionless
ratio κa/κt = κa/(κa +κs) = 1−A (where A is the albedo), i.e. the
fraction of the extinction owing to absorption. If this is not specified
for a given band, the code will default to assume equal absorption
and scattering opacities.

4 EXISTING BANDS & SPECIAL BEHAVIORS

A wide variety of sources are pre-coded for different mod-
ules in GIZMO. See the User Guide for up-to-date details.
These include soft and hard X-rays (RT_XRAY); HI, HeI,
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and HeII ionizing photons (RT_CHEM_PHOTOION); Lyman-
Werner (H2 dissociating) photons (RT_LYMAN_WERNER); photo-
electric (dust-ionizing) photons (RT_PHOTOELECTRIC); near-
ultraviolet broad-band continuum (RT_NUV); optical-near infrared
broad-band continuum (RT_OPTICAL_NIR); free-free emission
and absorption for a fully-ionized gas with Thompson scat-
tering (RT_FREEFREE); and broad-band infrared dust transfer
(RT_INFRARED).

Most of these bands are built for applications including star
and planet and galaxy formation, accretion, black holes and active
galactic nuclei, compact object dynamics, and more – so the rele-
vant sources which are current coded will assume things like “star
particles” for the sources. If you want to modify these (to e.g. in-
clude the relevant band in a stellar structure/dynamics simulation),
you need to modify the source function (though the opacities may
be fine already, you should obviously check, or code a new band if
appropriate). Likewise if you want to include new sources (e.g. gas
X-ray emission for sufficiently hot plasmas) you can simply add
the relevant lines to the source functions, as described above. The
free-free and infrared modules do include gas as a source.

Most of these modules have additional interactions which
need to be custom coded for the appropriate physics. For ex-
ample, RT_XRAY, RT_CHEM_PHOTOION, RT_LYMAN_WERNER,
RT_PHOTOELECTRIC, and RT_INFRARED all interact with the
gas chemistry and/or thermal cooling physics (with different cool-
ing/chemistry modules such as default COOLING or GRACKLE or
CHIMES or the rt_chemistry sub-modules using different parts
of these RHD bands if they are enabled). This doesn’t appear ex-
plicitly in our general RHD equations in § 1 because its really a
question of what the radiation does to the gas once it is absorbed,
modifying (“within” the gas equations) other equations like the
internal chemistry. X-rays interact via Compton cooling, infrared
and photoelectric via setting the dust temperature and photoelectric
emission and hence the dust-gas interaction/cooling terms, ioniz-
ing and Lyman-werner bands directly change the ionization state
of the gas. If you are adding new modules which interact with the
cooling/thermodynamics/chemistry of the gas, you should start by
looking at the behavior of these.

Some bands also are specifically set up to re-process radia-
tion absorbed in other bands: e.g. if you enable RT_INFRARED
and some of the other bands whose opacity is dominated by dust
(e.g. RT_OPTICAL_NIR), then the code is set up so that radiation
absorbed by the dust in those other bands will be assumed to re-emit
in the dust band.

Most of the above bands are very narrow, so we can treat the
equations above in the grey limit over the width of the band to rel-
atively high accuracy. Some, like free-free, are broad but the opac-
ities are very close to grey over the regime of applicability. But it
is possible to account for spectral shape within a band, if needed.
One example is RT_INFRARED. Here the entire IR is modeled
as a modified blackbody in shape, but we do not assume (unlike
many studies in the literature) that the dust or radiation or gas tem-
peratures are identical. The radiation temperature, or equivalently
spectral shape or median/peak wavelength is evolved including ab-
sorption and emission and advection/mixing between cells: the key
assumption is that both photon number and energy are integrated
exactly (so tracking the radiation temperature is done in a man-
ner such that the code gives the correct mean energy per photon
exactly); this is then used to compute band-integrated but spectral-
shape-dependent opacities.
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Hopkins P. F., Grudić M. Y., Wetzel A., Kereš D., Faucher-Giguère C.-A.,
Ma X., Murray N., Butcher N., 2019, MNRAS, p. 2736

Jiang Y.-F., Stone J. M., Davis S. W., 2014, ApJS, 213, 7
Levermore C. D., 1984, Journal of Quantitative Spectroscopy and Radiative

Transfer, 31, 149
Lowrie R. B., Morel J. E., Hittinger J. A., 1999, ApJ, 521, 432
Mihalas D., Mihalas B. W., 1984, Foundations of radiation hydrodynamics.

New York, Oxford University Press, 731 p.
Skinner M. A., Ostriker E. C., 2013, ApJS, 206, 21
Stone J. M., Mihalas D., Norman M. L., 1992, ApJS, 80, 819

APPENDIX A: ALTERNATIVE FORM OF THE RSOL
EQUATIONS

For purposes of understanding how the RSOL enters the dynam-
ics, it is convenient to re-write the Eulerian equations solved in the
following form:

ρ

c̃
D
Dt

(
Iν
ρ

)
+∇· (n Iν −β Iν) = Ra

(
jem
ν − Iν

)
+ Rs (Jν − Iν) + 3n ·βRa

(
jem
ν − Jν

)
+ n ·β (Ra + Rs)(Iν + 3Jν)−2Rs β ·Hν

− (Ra−Rs) β · {β · (JνI+Kν )} (A1)

where Ra, s ≡ ρκa, s. Here, all variables have the identical meaning
to their usual meaning with c̃ = c, regardless of the RSOL. The only
term where the RSOL c̃ appears is in the time derivative D/Dt. Note
that ρD(X/ρ)/Dt is defined to be ∂X/∂t +∇ · (uX) – this does
not imply a relativistic boost, since X is not Lorentz-transformed
to a comoving frame – it is simply a linear coordinate transforma-
tion convenient for our moving fluid elements. Taking moments of
Eq. A1 we obtain:

ρ

c̃
D
Dt

(
er

ρ

)
+∇·

(
F̃r−β er

)
(A2)

= Ra
(
4π〈 jem

ν 〉− er
)

+ (Ra−Rs)β ·Gr

ρ

c̃
D
Dt

(
F̃r

ρ

)
+∇·

(
Pr−β⊗ F̃r

)
(A3)

=−(Ra + Rs)Gr +βRa
(
4π〈 jem

ν 〉− er
)

where Gr ≡ F̃r−β · (er I+Pr) and F̃r ≡ Fr/c.
These are the forms solved. The association of c̃ with the

derivative D/Dt as opposed to e.g. ∂/∂t is arbitrary, but deliberate,
as it ensures more rapid convergence with respect to c̃/c in systems
with relatively large velocities and maintains the Galilean invari-
ance of tightly-coupled (diffusive) solutions. It also makes it more
clear how c̃/c effectively enters as a time-unit rescaling for the ra-
diation. Finally, it also makes the ordering in O(v/c) more clear –
for example, one can easily verify that the β⊗ F̃r term is never im-
portant in any (streaming or static/dynamical diffusion) limits, and
can be safely dropped, while the β er and β ·Gr terms are important
given our Eulerian definition of er and F̃r in the diffusive limits and
must be retained (Mihalas & Mihalas 1984).
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