Numerical Methods

(Additional Notes from Talks by PFH)

SPH

Lucy 77, Gingold & Monaghan 77 Reviews by: Springel 11, Price 12

Smoothed-Particle Hydrodynamics

 Lagrangian, adaptive, simple, conservative

Lucy 77, Gingold & Monaghan 77 Reviews by: Springel 11, Price 12

 Solve EOM at particle locations (stabilize with artificial diffusion)

Smoothed-Particle Hydrodynamics

- Lagrangian, adaptive, simple, conservative
- Artificial diffusion terms:
 excess diffusion, viscosity

"new" SPH (Hopkins 13)

"old" SPH

(Springel 02)

(after 20 orbits)

Morris 97, Okamoto 03, Cullen & Dehnen 10, Bauer & Springel 12

Ritchie & Thomas 01, Agertz 07, Price 12, Read 12

Kelvin-Helmholtz Instabilities

"Traditional SPH"

- GADGET/(old)GASOLINE
- ~32 neighbors (cubic spline)
- constant artificial viscosity
- "density" formulation

• "Modern SPH"

- P-SPH/SPHS/PHANTOM
- ~128-500 neighbors (alt. kernels) (many people: Read, Dehnen)
- high-order switches (Cullen+Dehnen)
- "pressure" formulation (Hopkins, Saitoh+Makino)
- artificial diffusion for entropy (Price, Wadsley)

"old" SPH (Springel 02) "new" SPH (PSPH) (Hopkins '13): >>100 neighbors

Sub-sonic turbulence (vorticity)

Rayleigh-Taylor Instabilities

Grid+boost

"The Blob" (Agertz et al.)

Artificial Surface Tension (entirely fix-able!)

- Fundamental low-order errors:
 - converge slowly:
 "beat down" by increasing kernel size, but this is *not efficient!*
- MHD & anisotropic diffusion operators ill-posed

AMR + Fixed-Grids

Berger & Colella 89 (& others) Reviews by: Teyssier 14

Adaptive Mesh Refinement

- Eulerian, well-studied, high-order
- Each cell carries conserved quantities inside volume V_i
- Solve Reimann problem between geometric faces

$$\Delta m_i = \int_{\text{cell}} \frac{\partial \rho}{\partial t} d^3 \mathbf{x} = -\int_{\text{cell}} \nabla \cdot (\rho \, \mathbf{v}) \, d^3 \mathbf{x}$$

Adaptive Mesh Refinement (AMR) CHALLENGE: POPULAR METHODS HAVE PROBLEMS

Rayleigh-Taylor instability (AMR, 256²)

- Eulerian, well-studied, high-order
- Excessive mixing/diffusion when fluid moves over cells

Bryan 95, Wadsley 08, Tasker & Bryan 08, Springel 10

Adaptive Mesh Refinement (AMR) CHALLENGE: POPULAR METHODS HAVE PROBLEMS

- Eulerian, well-studied, high-order
- Excessive mixing/diffusion when fluid moves over cells
- Geometric effects:
 - carbuncle instability (shocks)
 - loss of angular momentum
 - grid-alignment (disks)
- Also "beaten down" with resolution, but *expensive*
 - Hahn '10: >>512² resolution to avoid grid-alignment

Peery & Imlay 88, Mueller & Steinmetz 95, Hahn 10

Noh Implosion

Sedov Explosion

(grid breaks what should be spherical symmetry)

New Hybrid Lagrangian Godunov Methods (MFM/MFV/MMM)

New Methods Combine (some) Advantages of Both

- Moving-meshes (AREPO), meshless finite-volume (GIZMO), high-order ALE methods
- Move with flow, no preferred geometry, but also accurate, high-order, and shock-capturing
- Less well-tested !

AREPO: Springel 2010 TESS/DISCO: Duffel 2011 FVMHD3D: Gaburov 2012 GIZMO: Hopkins 2015 (arXiv:1409.7395)

Lanson & Vila 2008 Gaburov & Nitadori 2011 PFH 2014, 2015, 2016

- Mesh-generating points move (if desired)
- Volume is "partitioned" with a continuous kernel (MFM/MFV) or step function (moving-mesh)

$$d\operatorname{Vol}_{i,j,k} = d^3 \mathbf{x} \, \frac{W(\mathbf{x} - \mathbf{x}_{i,j,k})}{\sum W_{i,j,k}}$$

Lanson & Vila 2008 Gaburov & Nitadori 2011 PFH 2014, 2015, 2016

 Integrate EOM over volume: equivalent to Reimann problem at "effective face" (quadrature)

$$\Delta m_i = \int_{\text{vol}} \frac{\partial \rho}{\partial t} d^3 \mathbf{x} = -\int_{\text{vol}} \nabla \cdot (\rho \, \mathbf{v}) \, d^3 \mathbf{x}$$

GIZMO: Hopkins 2015

GIZMO: New Meshless Methods & Fluid Mixing (<u>www.tapir.caltech.edu/~phopkins</u>)

Cartesian Grid

Meshless Finite Volume

Hopkins 2015 (arXiv:1409.7395)

Summary

SPH:

Neighbor number: is it worth it? Hot halos: numerical mixing MHD: need *even more* neighbors Anisotropic diffusion: fundamental barriers

Moving-mesh, meshless Godunov:

"Grid noise": Mach <~ 0.01 problems

MHD: div-cleaning corrupts weak-field ($v_A < 0.01^*v_{turb,thermal}$)

AMR:

Angular momentum/grid alignment