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1 OTHER PHYSICS OF INTEREST

There is a tremendous range of physics for these problems,
much of which is available in GIZMO. For example:

(i) Sink Particles, Star and Planet Forma-
tion/Growth/Accretion, and “Feeback” from those
Sources: GIZMO has a tremendous number of modules for
all of these processes. For e.g. the cases of most interest
for star and/or planet formation, see the description of the
SINGLE STAR modules (there are many).

(ii) Micro-physical conduction & viscosity: GIZMO

can follow isotropic (Navier-Stokes) or anisotropic (Spitzer-
Braginskii) conduction and viscosity with either user-
specified coefficients or physically self-consistently calcu-
lated coefficients based on the local state of the gas. See the
code description of these modules (CONDUCTION, VISCOSITY)
for details.

(iii) Turbulent “mixing,” diffusion, conduction,
viscosity, and other terms: GIZMO likewise can follow
un-resolved “turbulent mixing” with standard sub-grid-scale
treatments of the local effective “eddy diffusivity” (qualita-
tively following e.g. Smagorinsky 1963). See the code de-
scription of these modules (TURB DIFF X) for details.

(iv) Cosmic rays: Most of the cooling/chemistry mod-
ules assume a uniform cosmic ray background by default,
but if explicit cosmic ray transport is desired, see the
COSMIC RAYS modules.

(v) Shearing Boxes, Driven Turbulent Boxes, and
other special boundary conditions: All available, see
the documentation on different types of boxes and boundary
conditions.

(vi) Dust Dynamics: GIZMO includes detailed models
for the dynamics of dust grains, used extensively in various
papers. Depending on which Config flags are enabled, we
can explicitly follow drag, Lorentz, radiation pressure, and
gravitational forces, as well as use the local dust grain den-
sity to compute dust-gas heating/cooling terms, opacities,
and ionization states for the gas. With COOLING enabled,
and appropriate flags set, the code will use the local chem-
istry to self-consistently calculate the drag forces including
e.g. Lorentz, Coulomb, Stokes, and Epstein terms appropri-
ate for an arbitrary power-law grain size distribution. See
GRAIN FLUID flags.

(vii) Optically-Thick Cooling & Heating Physics:
At sufficiently high densities, gas becomes optically thick
to its own cooling radiation. In simulations with explicit
multi-frequency radiative transfer (the RADTRANSFER flags),
this can be handled explicitly – these modules include so-
phisticated treatments of different dust, gas, and radia-

tion temperatures. Without explicit radiation transport,
but COOLING enabled, GIZMO approximates the optically-
thick cooling limit following Rafikov (2007) (the relevant
approximations are checked against exact results for proto-
planetary disks in Chiang & Goldreich 1997; Allen et al.
2007; Zhu et al. 2012).1

2 NON-IDEAL MHD COEFFICIENTS

Non-ideal MHD is enabled by the flag MHD NON IDEAL. The
numerical methods for the non-ideal terms are presented
and tested in Hopkins (2017). If this flag is set but no cool-
ing and/or chemistry is enabled, the coefficients are set by-
hand. If, however, cooling and/or chemistry is enabled (with
the COOLING master flag, regardless of which sub-module is
used), then the relevant coefficients will be dynamically cal-
culated based on the local plasma state of the gas.

Astrophysical non-ideal MHD effects relevant in the
limits relevant for GMCs and protostellar/planetary disks
(dense gas with very low ionized fraction, so the local “tight
coupling” approximation applies) include Ohmic dissipa-
tion, the Hall effect, and ambipolar diffusion. All appear as
diffusion operators in the induction equation; if we operator-
split the ideal MHD term (solved whenever MHD is en-
abled), we have

dB

dt
= −∇×

[
ηO J + ηH

(
J× B̂

)
− ηA

(
J× B̂

)
× B̂

]
(1)

where J = ∇ × B. The diffusivities ηO,H,A govern Ohmic
resistivity, the Hall effect, and ambipolar diffusion, respec-

1 Following Rafikov (2007), each gas element is treated as a mid-
plane element embedded in an optically thick slab with surface

density Σslab calculated according to a local Sobolev approxi-

mation. We assume it is in LTE, which relates the temperature
change at midplane to surface radiation by way of the optical

depth, using the equations in Appendix A therein. To good ap-

proximation, the heating/cooling rate per element is “capped” at
the maximum value |dE/dt| = σ T 4

mid (Σslab/µ)−1/(1+κR Σslab),

where T = Tmid is the element or “midplane” temperature, µ the
mean molecular weight, and κR the Rosseland mean opacity. We

calculate κR at low temperatures from the tables in Semenov

et al. (2003); at high temperatures (> 1500 K) we explicitly tab-
ulate the Thompson, molecular-line, H− ion, Kramers, and e−

conductivity terms as in Badnell et al. 2005.
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tively, and are given by the general expressions:
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]
(4)
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σH ≡
e c

B

∑
j

nj Zj
1 + β2

j

(6)

σP ≡
e c

B

∑
j

nj |Zj |βj
1 + β2

j

(7)

βj ≡
|Z|j eB
mj c νj

(8)

where σO,H, P are the Ohmic, Hall, and Pedersen conduc-
tivities, the index j sums over the different relevant species
in the fluid (here ions, electrons, neutrals, and dust grains,
i, e, n, g, respectively), Zi = +1, Ze = −1 , Zn = 0, and Zg
are the mean neutral/electron/ion/grain charges, mi, e, n, g

the ion/electron/neutral/grain mass (mn = µmp is calcu-
lated using the appropriate mean molecular weight µ for the
element abundances, temperature, and molecular fraction
determined in the cooling chemistry, and mg = (4π/3) a3g ρ̄g
with ag the grain radius and ρ̄g the internal grain material
density), ni, e, n, g the number density of each species (with
mean number density n = ρ/(µmp) and ng = mn fdg n/mg

with fdg the dust-to-gas ratio by mass), mp is the proton
mass, e the electron charge, c the speed of light, and B = |B|
the magnitude of the magnetic field.

At the densities and temperatures of interest, the colli-
sion frequencies νe, i, g are given by:

νe = 0.051ne T
−1.5
100 cm3 s−1 (9)

+
ρn
[
5.15T 0.65

100 + 1.06T 0.5
100

]
109 (mn +me)

cm3 s−1

νi = 0.051
ρe
ρi
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100 cm3 s−1 (10)
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128 kBT

9πmn
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(11)

where the terms in νe and νi represent electron-ion,
electron/ion-H2, and electron/ion-He collisions, respectively,
with assumed H, He abundances ≈ 0.76, 0.24 (changing this
has negligible effects), and T100 ≡ T/100K. In νg, δgn ≈ 1.3
is the Epstein coefficient for spherical grains (Liu et al.
2003).

We follow Wurster et al. (2016), who themselves follow
Draine & Sutin (1987) and assume the grains have a non-
evolving size distribution with primarily collisional+cosmic
ray charging, and that the system obeys global charge neu-
trality and local ionization equilibrium: this allows us to

calculate

Zg ≡ −ψ
ag kB T

e2
(12)

ψ = α

(
exp (ψ)− (mi/me)

1/2
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)
(13)
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kig ≡ π a2g
(

8 kB T

πmi

)1/2

(1 + ψ) (17)
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πme
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exp (−ψ) (18)

where kB is the Boltzmann constant, T is the gas kinetic
temperature, kig, eg are the coefficients for ion-grain and
electron-grain collisions respectively, and ζ is the local cos-
mic ray background ionization rate.

For the grains, we assume an effective size ag = 0.1µm,
material density ρ̄g = 3 g cm−3 (typical of both silicate
and carbonaceous grains), and constant dust-to-metals ra-
tio fdg = 0.01 (Z/Z�). For reasonable values, these choices
only weakly influence the coefficients ηO,H,A, compared to
the values of n, T , and ζ. We assume that at low tem-
peratures and high densities, the ions are dominated by
Mg, so mi = 24.3mp (at high temperatures, lighter ions
become important, but this only changes the diffusivities
where they are dynamically irrelevant; explicitly assuming
mi = mp above 200 K, for example, we obtain identical con-
clusions). This completely determines the non-ideal MHD
coefficients, given the MHD state of the gas and ζ. If cos-
mic rays are being evolved explicitly, ζ is calculated from
the local cosmic ray energy density (assuming a universal
shape of the spectral distribution for cosmic rays); other-
wise we assume a fixed Milky Way (really solar-circle) like
background, ζ ≈ 10−17 s−1, but this can easily be modified
where it is assumed in gradients.c.
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