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1 General search method

We use the F -statistic, a coherent matched-filtering detection statistic first introduced by
Jaranowski et al. [4] in the context of the search for continuous-wave signals in ground
based detectors. This method has been implemented by the LIGO Scientific collaboration
in LAL/LALApps [6], and is currently used in the search for quasi-periodic GW signals
from spinning neutron stars (e.g. see [1]). The generalization of the F -statistic to a coherent
multi-detector search was first obtained by Cutler and Schutz [3]. The application of the
F -statistic to the search of continuous-wave sources (such as galactic white-dwarf binaries)
using LISA was first discussed in Królak et al. [5].

The multi-detector F -statistic has been implemented in LALapps, in the code ComputeFStatistic v2,
which we are using for the present analysis. This is the same method and code that has
been used previously by the PrixWhelanAEI group on MLDC1 [2, 7] and MLDC2 [10].

∗reinhard.prix@aei.mpg.de
†john.whelan@aei.mpg.de
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1.1 Multi-detector F-statistic

As shown in [4], the dimensionless strain signal sI(t) of a continuous gravitational wave at
detector I can be represented in the form

sI(t) =
4∑

µ=1

Aµ hI
µ(t) , (1.1.1)

in terms of four signal-amplitudes Aµ, which are independent of the detector I, and the
detector-dependent basis waveforms hI

µ(t). The four amplitudes Aµ can be expressed in terms
of two polarization amplitudes A+, A×, the initial phase φ0 in the solar-system barycenter
(SSB) at a reference time τref, and the polarization angle ψ of the wave frame with respect
to the equatorial coördinate system, namely

A1 = A+ cosφ0 cos 2ψ − A× sinφ0 sin 2ψ , (1.1.2a)

A2 = A+ cosφ0 sin 2ψ + A× sinφ0 cos 2ψ , (1.1.2b)

A3 = −A+ sinφ0 cos 2ψ − A× cosφ0 sin 2ψ , (1.1.2c)

A4 = −A+ sinφ0 sin 2ψ + A× cosφ0 cos 2ψ . (1.1.2d)

We can further relate the two polarization amplitudes A+ and A× to the overall amplitude
h0 and the inclination angle ι of the quadrupole rotation axis with respect to the line of
sight, namely

A+ =
1

2
h0

(
1 + cos2 ι

)
, A× = h0 cos ι . (1.1.3)

The four basis waveforms {hI
µ(t)} are the responses generated in detector I by

h
↔

1(τ) = ε↔+(k̂) cosφ(τ) , (1.1.4a)

h
↔

2(τ) = ε↔×(k̂) cosφ(τ) , (1.1.4b)

h
↔

3(τ) = ε↔+(k̂) sinφ(τ) , (1.1.4c)

h
↔

4(τ) = ε↔×(k̂) sinφ(τ) . (1.1.4d)

where {ε↔A(k̂)|A = +,×} is the traceless polarization basis transverse to the propagation

direction k̂ and τ is the time that the wave arrives at the solar system barycenter. The

precise relationship between the {hI
µ(t)} and the {h

↔
µ(τ)}, and the former’s more familiar

description in terms of the antenna-pattern functions aI(t) and bI(t) [4]) depend on the
response of the detector to gravitational waves, and we consider them more carefully in
Section 2.2 of this note.

The {hI
µ(t)} depend on the intrinsic parameters ω of the signal. In the case of continuous

waves from isolated neutron stars, ω would only consist of the s + 1 spin parameters, i.e.
ω = {f (k)}s

k=0, where f (k) is the k-th time-derivative of the intrinsic signal frequency in the
SSB.

In the following we denote the set of “Doppler parameters” (i.e. the parameters affect-

ing the time evolution of the phase) by λ ≡ {k̂, ω}, as opposed to the four “amplitude
parameters” {A}µ = Aµ.
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Using the multi-detector notation of [3, 5], we write vectors in “detector-space” in bold-
face, i.e. {s}I = sI , and so the signal model (1.1.1) can be written as

s(t;A, λ) = Aµ hµ(t;λ) , (1.1.5)

with implicit summation over repeated amplitude indices, µ ∈ {1, 2, 3, 4}.
The multi-detector scalar product is defined as

(x|y) ≡
∫ ∞

−∞
x̃I(f)S−1

IJ (f) ỹJ∗(f) df , (1.1.6)

where x̃(f) denotes the Fourier transform of x(t). We use implicit summation over repeated
detector indices, and the inverse noise matrix is defined by S−1

IJ S
JK = δK

I , in terms of the
double-sided noise PSD matrix SIJ . In the case of uncorrelated noise, where SIJ = SI δIJ ,
the scalar product simplifies to

(x|y) =
∑

I

(xI |yI) , (1.1.7)

in terms of the usual single-detector scalar product

(xI |yI) ≡
∫ ∞

−∞

x̃I(f) ỹI∗(f)

SX(f)
df . (1.1.8)

With the signal model (1.1.1), the log-likelihood ratio is found as

ln Λ(x;A, λ) = Aµ xµ −
1

2
AµMµν Aν , (1.1.9)

where we defined

xµ(λ) ≡ (x|hµ) , (1.1.10)

Mµν(λ) ≡ (hµ|hν) . (1.1.11)

We see that the likelihood ratio (1.1.9) can be maximized analytically with respect to the
unknown amplitudes Aµ, resulting in the maximum-likelihood estimators

Aµ
MLE = Mµν xν . (1.1.12)

Substituting this into the detection statistic, we obtain the so-called F-statistic, namely

2F(x;λ) ≡ xµMµν xν , (1.1.13)

where Mµν ≡ {M−1}µν , i.e. MµαMαν = δν
µ.

Let us consider the case where the target Doppler parameters λ are perfectly matched
to the signal λsig, we find the expectation value of the F -statistic as

E[2F ] = 4 + SNR2 , (1.1.14)

in terms of the “optimal” signal-to-noise ratio SNR, which is expressible as

SNR2 = sµMµν sν = AµMµν Aν = (s|s) . (1.1.15)
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1.2 Parameter estimation

From the expression (1.1.12) for the maximum-likelihood amplitudes Aµ in terms of the
measured Fa, Fb, we can infer the signal-parameters A+, A× (or equivalently h0, cos ι) and
ψ, φ0, by using (1.1.3) and (1.1.2). We compute the two quantities

A2
s ≡

4∑
µ=1

(Aµ)2 = A2
+ + A2

× , (1.2.1)

Da ≡ A1A4 −A2A3 = A+A× , (1.2.2)

which can easily be solved for A+, A×, namely

2A2
+,× = A2

s ±
√
A4

s − 4D2
a , (1.2.3)

where our convention here is |A+| ≥ |A×|, cf. (1.1.3), and therefore the ’+’ solution is A+,
and the ′−′ is A×. The sign of A+ is always positive by this convention, while the sign of
A× is given by the sign of Da, as can be seen from (1.2.2). Note that the discriminant in
(1.2.3) is also expressible as

disc ≡
√
A4

s − 4D2
a = A2

+ − A2
× ≥ 0 . (1.2.4)

Having computed A+, A×, we can now also obtain ψ and φ0, namely defining β ≡ A×/A+,
and

b1 ≡ A4 − βA1 , (1.2.5)

b2 ≡ A3 + βA2 , (1.2.6)

b3 ≡ βA4 −A1 , (1.2.7)

we easily find

ψ =
1

2
atan

(
b1
b2

)
. (1.2.8)

and

φ0 = atan

(
b2
b3

)
. (1.2.9)

The amplitudesAµ are seen from (1.1.2) to be invariant under the following gauge-transformation,
namely simultaneously {ψ → π/2, φ0 → φ0 + π}. Applying this twice, and taking account
of the trivial gauge-freedom by 2π, this also contains the invariance ψ → ψ + π. Note
that there is still an overall sign-ambiguity in the amplitudes Aµ, which can be determined
as follows: compute a ’reconstructed’ A1

r from (1.1.2) using the estimates A+,× and ψ, φ0,
and compare its sign to the original estimate A1 of (1.1.12). If the sign differs, the correct
solution is simply found by replacing φ0 → φ0 + π.

In order to fix a unique gauge, we restrict the quadrant of ψ to be ψ ∈ [−π/4, π/4)
(in accord with the TDS convention), which can always be achieved by the above gauge-
transformation, while φ0 remains unconstrained in φ0 ∈ [0, 2π).
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Converting A+, A× into h0 and µ ≡ cos ι is done by solving (1.1.3), which yields

h0 = A+ +
√
A2

+ − A2
× , (1.2.10)

where we only kept the ’+’ solution, as we must have h0 > A+. Finally, µ = cos ι is simply
given by cos ι = A×/h0.

We know that the errors dxµ satisfy (assuming Gaussian noise):

E[dxµ dxν ] = Mµν . (1.2.11)

As a consequence of (1.1.12), we therefore obtain the covariance-matrix of the estimation-
errors dAµ as

E[dAµ dAν ] = Mµν , (1.2.12)

which corresponds to the Cramér-Rao bound, and Mµν is seen to be the inverse Fisher-
matrix. The corresponding Fisher matrix for the variables {h0, cos ι, ψ, φ0} is simply ob-
tained from the above together with the appropriate Jacobian accounting for the variables-
transformation from Aµ.

2 Application to LISA and our MLDC pipeline

2.1 MLDC conventions for amplitude parameters

Unfortunately, the MLDC conventions for the amplitude parameters differ from the above
standard LIGO/CW definitions for {h0, cos ι, ψ, φ0}. Here we only summarize without deriva-
tion how the “translation” is performed:

• MLDC “Amplitude” = h0/2

• MLDC “Inclination” = π − ι

• MLDC “Polarization” = π/2− ψ

• MLDC “InitialPhase” = φ0

Note: There still seems to be an overall sign-difference (corresponding to a difference of
π in the “InitialPhase”) between our estimated amplitude-parameters and those quoted in
the MLDC keys, which is not understood. This sign-differences was already noted in MLDC1
and MLDC2 and appears to be still present in MLDC1B, we therefore simply “correct” our
quoted “InitialPhase” by π.

2.2 TDI Response and Fourier Approximation

Our analysis is performed in the frequency domain, but we have to account for the fact that
the Doppler-shifted frequency of the signal and the detector response will vary gradually
over the full one-year observation time in MLDC1B. We deal with this by breaking up the
full year into shorter intervals and performing short-time Fourier transforms (SFTs) over
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Figure 1: LISA configuration and TDI conventions used.

which the spectral properties and detector geometry can be treated as constant. This is the
same method used in the LSC for ground-based continuous wave (CW) searches, where a
typical SFT time is 30 minutes. For the MLDCs, we have used one-week SFTs. During the
αth time interval, we assume the detector output is adequately described by the αth SFT:

hI(t ∈ Tα) ≈ hI
α(t) =

∫ ∞

−∞
df h̃I

α(f) ei2πft . (2.2.1)

It is convenient to regard the signal contribution to the SFT of the raw data associated
with a particular TDI variable as being related to the strain h̃I

α(f) by a frequency-domain
response function Rα(f):

q̃X
α (f) =

h̃I
α(f)

Rα(f)
=
h
↔

α(f) : d
↔

I
α(f, k̂)

Rα(f)
. (2.2.2)

This division allows us to

• Use a different scalar response function R(f) for LISAsim and synthLISA, but the

same response tensor d
↔

• Convert the full data stream, including noise, non-WDB signals, and WDBs at all sky
locations to “strain” using a single R(f)

For example, for the TDI X variable in LISA simulator, the frequency-domain response in
the rigid adiabatic (RA) approximation is (see Figure 1)[8]

d
↔

X
α (f, k̂)

RLISAsim(f)
= e−i2πfL(6−bk·bn2+bk·bn3)/3c

(
−i4πfL

c

)
sinc

(
2πfL

c

)
×

{
n̂2 ⊗ n̂2

2

[
ei πfL

c
(1−bk·bn2) sinc

(
πfL

c
[1 + k̂ · n̂2]

)
+ e−i πfL

c
(1+bk·bn2) sinc

(
πfL

c
[1− k̂ · n̂2]

)]
/2

− n̂3 ⊗ n̂3

2

[
ei πfL

c
(1+bk·bn3) sinc

(
πfL

c
[1− k̂ · n̂3]

)
+e−i πfL

c
(1−bk·bn3) sinc

(
πfL

c
[1 + k̂ · n̂3]

) ]
/2

}
(2.2.3)
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To lowest order in frequency, in the long-wavelength (LW) limit, the division is obvious:

RLISAsimLW(f) =

(
i

c

4πfL

)
(2.2.4)

d
↔

X LW
α =

n̂2 ⊗ n̂2

2
− n̂3 ⊗ n̂3

2
(2.2.5)

This was the form used in the PrixWhelanAEI entries for MLDC1 and MLDC2. The fac-
torization of the full rigid adiabatic response is a matter of convention, but one which keeps
the tensor response balanced under inversion of the sky direction −k̂ is

RLISAsimRA(f) = RLISAsimLW(f) ei4πfL/c

[
sinc

(
2πfL

c

)]−1

(2.2.6)

d
↔

X RA
α (f, k̂) = e−i2πfL(−bk·bn2+bk·bn3)/3c

×

{
n̂2 ⊗ n̂2

2

[
ei πfL

c
(1−bk·bn2) sinc

(
πfL

c
[1 + k̂ · n̂2]

)
+ e−i πfL

c
(1+bk·bn2) sinc

(
πfL

c
[1− k̂ · n̂2]

)]
/2

− n̂3 ⊗ n̂3

2

[
ei πfL

c
(1+bk·bn3) sinc

(
πfL

c
[1− k̂ · n̂3]

)
+e−i πfL

c
(1−bk·bn3) sinc

(
πfL

c
[1 + k̂ · n̂3]

) ]
/2

}
(2.2.7)

The response tensors for the Y and Z TDI variables can be obtained by cyclic permutations
of the unit vectors n̂1, n̂2, and n̂3, and response tensors for linear combinations like Y − Z
are simply the appropriate linear combinations of the corresponding response tensors.

Technically, the implementation of the scalar response function RRA(f) is simpler than

that of the response tensor d
↔

RA
α (f, k̂). Therefore, shortly after the submission of our MLDC2

entry, we developed the partial rigid adiabatic approach, using SFTs calibrated with RRA(f)

in conjunction with d
↔

LW. This already produced a marked improvement in the estimation
of amplitude parameters.[9, 10]

We distinguish among four different approximations, as summarized in Table 1. Compar-
isons between approximations showed the effectiveness of our improved response modelling.
The submitted results used the full rigid adiabatic (RA) response.

Given the response tensor, we’re able to construct the frequency-domain template wave-
forms:

hI
α,1(f) = aI

α(f, k̂) c̃osφ(f) , (2.2.8a)

hI
α,2(f) = bIα(f, k̂) c̃osφ(f) , (2.2.8b)

hI
α,3(f) = aI

α(f, k̂) s̃inφ(f) , (2.2.8c)

hI
α,4(f) = bIα(f, k̂) s̃inφ(f) (2.2.8d)

where the AM coëfficients are constructed from the response tensor according to

aI
α(f, k̂) = d

↔
I
α(f, k̂) : ε↔+(k̂) (2.2.9a)

bIα(f, k̂) = d
↔

I
α(f, k̂) : ε↔×(k̂) . (2.2.9b)

Note the differences from the long-wavelength AM coëfficients:
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Table 1: Different approximations used in modelling TDI response. The long-wavelength
limit (LWL) was used in our MLDC1 and MLDC2 entries. Partial rigid adiabatic (RA),
which uses RA SFTs with the LW response tensor, was applied to MLDC2 shortly after
submission. For MLDC1B we have implemented the RA response tensor, allowing us use
the full rigid adiabatic response. A more approximate but faster approach, known as buffered
RA calculates the response tensor once per sky position, using the central frequency fcent

of the frequency band being analyzed. This can be sufficiently accurate if the analysis is
divided up into narrow enough frequency bands.

Approx R(f) d
↔

(f, k̂)

LWL RLW(f) d
↔

LW

partial RA RRA(f) d
↔

LW

full RA RRA(f) d
↔

LW(f, k̂)

buffered RA RRA(f) d
↔

LW(fcent, k̂)

• The a and b now depend on frequency as well as sky position.

• The time dependence usually ascribed to a and b is represented by the SFT index α.

• The a and b are now complex, thanks to the complex response tensor.

2.2.1 Amplitude Parameter Metric

The amplitude parameter metric elements

Mµν =
∑

α

∑
I

∫ ∞

−∞
df
h̃I

α,µ(f)∗ h̃I
α,ν(f)

SI
α(f)

(2.2.10)

are complicated slightly by the complex nature of a and b. We end up with

{Mµν} =


A C 0 E
C B −E 0
0 −E A C
E 0 C B

 , (2.2.11)

where

A =
∑

α

∑
I

SI
α(f0)

−1TSFT

2

∣∣aI
α(f0)

∣∣2 (2.2.12a)

B =
∑

α

∑
I

SI
α(f0)

−1TSFT

2

∣∣bIα(f0)
∣∣2 (2.2.12b)

C =
∑

α

∑
I

SI
α(f0)

−1TSFT

2
Re[aI

α(f0)
∗bIα(f0)] (2.2.12c)

E =
∑

α

∑
I

SI
α(f0)

−1TSFT

2
Im[aI

α(f0)
∗bIα(f0)] . (2.2.12d)
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Its inverse is

{Mµν} =
1

D


B −C 0 −E
−C A E 0
0 E B −C
−E 0 −C A

 , (2.2.13)

where we have defined the determinant

D = AB − C2 − E2 (2.2.14)

These generalizations have now been built into the LAL/LALApps code.

2.3 Wide-parameter search grid

For simplicity we used a “foliated” template grid Freq x Sky in the Doppler parameter
space ∆λ = {f, α, δ}, consisting of a isotropic sky-grid with step-sizes at the equator:

dα(0) = dδ =

√
2m

(Rorb/c)2π f
, (2.3.1)

while for different latitudes we’ll use dα(δ) = dα(0)/ cos(δ), in order to obtain an isotropic
sky-grid. The frequency step-size is given by

df =

√
12m

π T
, (2.3.2)

where m is the desired maximal mismatch, f is the search-frequency and T the length of
observation. The expression for the frequency-resolution is the standard metric frequency
stepsize, while the sky-resolution is approximately valid for observation times T & 1/2 yr,
and can be derived from the orbital phase-metric.

2.4 MLDC1B WDB Pipeline

The basic structure of the MLDC1B pipeline was the same as that used in MLDC2, mak-
ing extensive use of the parameter-space metric for finding local maxima and deciding
cöıncidences. Furthermore, this pipeline and its parameter-tuning were specifically designed
to reduce secondary maxima and allow mostly primary candidates to pass. This is based on
the empirical observation that the location of secondary maxima seems to vary more strongly
between ’detectors’ X, Y and Z than the maxima corresponding to primary candidates, es-
pecially if an integration time of only T = 1 yr is used.

The parameters that were used with this pipeline are:

grid-mismatch in 1st-stage wide-parameter search m1 = 0.25
1st-stage detection threshold 2Fth = 20
metric sphere for local-maxima mLM = 4.0
coarse-cöıncidence mismatch mcoinc1 = 0.8
tight-cöıncidence mismatch mcoinc2 = 0.35
resolution-increase in each zoom zoomFactor = 10
number of final zoom-steps zoomLevel = 2
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Figure 2: Schematic representation of wide-parameter pipeline used in MLDC1B.
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Using these parameters, the pipeline performs reasonably well in reducing “false alarms”
due to secondary maxima. However, this scheme does not appear to deal well with highly
confused sources. This is illustrated by the decreasing detection efficiency between 1B.1.4
(13 sources found) and 1B.1.5 (only 3 sources found). More work is required to deal with
the confusion problem in a more satisfactory way.
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