
Ay123 Problem Set 5

Due Wednesday, December 5, 9:00 am

1. Supernova Shock Revival from Neutrino Heating (8 points)

Consider the final iron core of a massive star with a mass MFe = 1.5 M� and radius RFe = 3× 108 cm.
When this core collapses, the initial collapse stops when the central core with a mass Mcore = 0.7 M�
reaches nuclear densities. At this density the core bounces, driving a shock with an energy Ebounce =
1051 erg into the infalling outer core.

(a) Estimate the energy that is required to photodissociate 0.8 M� of Fe into alpha particles and
neutrons. Compare this energy to the bounce shock energy and comment on the fate of the
shock.

(b) In the proto-neutron star (with an initial radius 2 × 106 cm), the mean free path of neutrinos is
lν = 30 cm. Estimate the diffusion time for neutrinos to escape from the proto-neutron star and
hence estimate the neutrino luminosity during the initial neutron-star cooling phase.

(c) Assuming that 10% of the neutrino luminosity is absorbed by the infalling outer core, estimate
how long it takes to absorb enough neutrino energy to reverse the infall of the 0.8M� outer core
and drive a successful supernova explosion with a typical explosion energy of 1051 erg. Assume the
outer core has initial energy per unit mass ε = −GMFe/RFe. Compare this time to the dynamical
(free-fall) timescale of the proto-neutron star.

2. Protostar (10 points)

(a) Find the average density and central temperature (as a function of mass) of an accreting protostar
whose initial radius is given by the expression

R

R�
=

43.2

1− 0.2X

M

M�

if its structure is approximated by a n = 1.5 polytrope with hydrogen mass fraction X = 0.7 and
helium fraction Y = 0.3.

(b) Suppose the protostar maintains a polytropic structure until its collapse is halted when the central
temperature reaches Tcrit required for hydrogen burning. Show that the greater the mass of the
star, the smaller the density at the point where Tcrit is reached:
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(c) Noting the criterion for electron degeneracy, estimate the critical mass below which collapse is
halted by electron degeneracy, not by hydrogen burning. After dropping factors of order unity,
show that this mass is related to the Chandrasekhar limit, MCh, by the approximate relation
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Evaluate this mass for Tcrit = 5× 106 K and MCh = 1.4M�.

3. Binary Stars (10 points)

The minimum orbital separation of a star with mass M and radius R in a binary star system is
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where Mtot is the total mass of the binary system.
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(a) Show that the minimum orbital period of the binary is
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where ρ is the average stellar density. Evaluate Pmin for a binary system of two red giants with
ρ = 10−6 g/cm3, two Sun-like stars with ρ = 1 g/cm3, two white dwarfs with ρ = 106 g/cm3, and
two neutron stars with ρ = 3× 1014 g/cm3.

(b) Consider a red giant of M1 = 1M�, with a core mass Mc = 0.5M�, envelope mass Me = 0.5M�,
and radius R1 = 100R�. It undergoes a common-envelope event with a low-mass secondary star
of mass M2 and radius R2, which ejects the envelope of the red giant. The α prescription for
common-envelope events predicts the final orbital separation af :
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Solve equation 1 for af . Show that when α is of order unity and M2 � Me, the final orbital
separation satisfies af � ai, and equation 1 reduces to
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(c) A stellar merger will occur if the final separation af between the secondary and the primary’s
core is smaller than the minimum orbital separation possible for the secondary star. By replacing
af with amin for the secondary, and using M2 �Mc, find the minimum secondary mass that can
eject the envelope of the primary without merging with the core of the primary. Evaluate this
mass for α = 0.5 and typical brown dwarf radius R2 = 0.1R�.

4. Hydrogen Lines from Stars (12 points)

(a) Consider a stellar atmosphere of pure hydrogen gas. Let’s suppose H atoms only populate the
n = 1 (ground) and n = 2 states. If n2 is the number density of atoms with electrons in the
n = 2 state, write down an expression for n2/ntot. You will need to use the Boltzmann factor in
addition to your result from the Saha equation Problem 3a of HW 3.

(b) If the continuum photosphere is at a total number density ntot = 1017cm−3, make a plot of n2/ntot

as a function of stellar surface temperature. Recall that the energy levels of the H atom are given
by E = −13.6/n2 eV and the degeneracies are gn = 2n2. At what temperature does the value of
n2/ntot peak? If the strength of Balmer lines is determined by the relative population n2/ntot,
which stellar spectral type should show the most prominent H lines? Although you will not be
very far off, you should get the wrong answer in this part of the problem. In reality, A-type stars
with Teff = 10000 K have the strongest Balmer lines.

(c) The cross-section at line center for the production of Balmer lines is σ ' 10−16 cm2. Assuming
an isothermal atmosphere for an A-type star with g = 104cm s−2, calculate the star’s scale height.
Then assume a value n2/ntot = 10−4 that is constant, and compute the optical depth at the
center of the Balmer line at the continuum photosphere of an A-type star. Is this small or large?
Calculate the number density at which τ = 1 near the center of the Balmer line. At how many
scale heights above the continuum photosphere of the star is the Balmer line formed?

(d) Replot the value of n2/ntot as in part b, but with the number density you computed in part c.
At which temperature do you now expect Balmer lines to be strongest?

5. MESA Project, Part 2 (10 points)

Complete the MaxiLab associated with the MiniLab you completed on Homework #4. Hand in answers
to questions and plots created during the course of the MaxiLab.
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