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-of Stellar Structure, has been elegantly refined and cin:m?c_w applied by

Schwarzschild and Hiirm and their collaborators at Princeton (see also Bondi
and Bondi 1949), and has recently been vigorously pursued for advanced phases
of stellur evolution by Hauyashi and his colieitgues at Kyoto (Hayashi, Hoshi,
and Sugimoto 1962). Happily, for our purposes here, as well as for ull workers
in the field, these techniques have been fully described in Schwarzschild’s (1958)
lucid monograph, Structure and Evolution of the Stars,

The other two approaches have basically consisted of retaining the full con-
stitutive relations in the problem and solving the equations in physical variables
on clectronic computers. The principal workers, in terms of these two ap-
proaches, have been Hoyle (Haselgrove and Hoyle 19564a), who has dealt with
the differential equations directly and written programs to integrate them by
classical techniques such as the Runge-Kutta method, and Henyey (HLL
19554, Henyey, Wilets, Bohm, LeLevier, and Levée [hereafter referred to as
HWBLL] 1959; Henyey, Forbes, and Gouid [hereafter referred to as HI'G]
1964), who has transiormed the differential equations explicitly to diffcrence
equations and solved them by modern techniques such as reluxation procedures,
Since the present writers have some experience with these respective approaches
we shall describe them in the next (wo subsections. Nt the least of our motiva-
tions has been the fecling that, with fast electronic compulers becoming more
and more widely available, these potentially powerful tools of astrophysical re-
search (see Wrubel 1960) should be utilized much more extensively than they
have been in the past. = :

3.2, FrrrinGg MeTHO

The construction of evolutionary sequences of stellar models by the method
of the preseat subsection involves separating the problem into a “space part”
and a “time part.” The first of these is the construction of a single stellar medel,
that is, the derivation of the march of physica! variables between center and
surface. The second part is the calculation of the evolutionary time change of
some basic characteristics of this model, for example, the change of chemical

composition at each point, the work done by gravitational contraction, or the:

amount of total mass loss. The second part provides the input data for calculat-
ing a new model; and the procedure is thence repeated indelinitely to build up
an evolutionary sequence of models. We note that it is not at all necessary 1o
choose time as the evolutionary parameter. In certain cases, other variables may
be more convenient, such as Schwarzschild’s eigenvalue C for radiative envelopes
(SES, § 20) or the mass fraction of a growing hydrogen-vxhausted core (Hoyle
and Schwarzschild 1955). In the techniques described here, however, we shall
implicitly restrict the discussion to time ¢ as the evolutionary independent vari-
able, in keeping with a direct physical approach.

In the method of this subsection, the bulk of the work in constructing an
evolutionary sequence is in obtaining the space part of the solution, since this
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requites solving a non-lincar fourth-order boundary-value problem. Lincar
equations suflice for the time part if we ask only for the time changes in chemi-
cal composition at cach point in a model, though in cases of fast thermal and
dynamical evolution just now coming under attack, the time part will soon be-
come more complex {cf. Hoyle 1959; SES, eq, {12.10]; Soboley 1960; Sampson
1961; and the following subscction), We shall therefore discuss the space part
separately first, : : :
This involves four first-order differential equations of equilibrium, in four
dependent variables and one independent variable. Tt will suffice-at the outset
to consider any added variables as functions only of the dependent variables and
of the chemical composition. The equations for a spherical stellar model have
been derived in several expositions (e,g., Wrubel 1958, Schwarzschild 1958,
Aller 1954, Chandrasckhar 1951); in conventional notation they are as follows:

¢ m%u|m,ﬂ.ﬁ|u (3.1)
wmml,u“l_a.,lwm. _ (3.2)
.%Iaw._. = ofwua p %u.wa. (radiative transier), (3.3a)
&ﬁHHH.W.IHWMMW.. {convective transport), (3.3b)
%w.ﬂn.. (3.4)

These represent, respectively, at each point in a star, hydrostatic equilibrium,
censervation of mass, space rate of energy transfer, and conservation of energy.
The dependent variables are P, Lotal pressure; r, distance from center; T, tem-

» perature; and L, energy per unit time emerging from the ‘sphere of radius r.

M., the mass interior to r, is here taken as the independent variable rather than
#, since the dependence of chemical composition on M, with time is unaltered by
expansion or contraction (Haselgrove and Hoyle 1956a), beth of which occur in
virtually all stars during evolution. The constitutive variables, which as noted
depend here only on the dependent. variables and the chemical composition,
are p, gas density in mass per unit volume; «, opacity to radiation in area per
unit mass; T, adiabatic exponent (Chandrasekhar 1939, pp. 55-59); and &,
energy released per unit mass and per unit time. G is the gravitation constant, g
is the radiation density constant, and ¢ is the velocity of light (Allen 1963).
Thus, we have four equations in four unknowns, plus the chemical composi-
tion. We need four initial conditions or boundary conditions on the dependent
variables, For the present discussion of the mathematical structure of the prob-
lem it will suffice to use the simplest boundary conditions, These conditions are
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not sufficient for models of the sun and cooler stars; refercnce may be made to
SES, § 11, for a more detailed discussion. At the surface, there are natural
boundary conditions on pressure and temperature which are gencrally sufficient
for stars hotter than the sun; we have :

26 PG BB M, (3.5)

s,_ﬁ_.w E is the total' mass of the star. At the center there are natural boundary
conditions on the other two variables:

r=0, L =0, A M, =0. (3.6)

e.ﬁz. these boundary conditions, and given a specified mass, M, and (distribu-
tion of) composition, we have sufficient provisions to obtain a solution. The
Vogt-Russell theorem (Vogt 1926; Russell, Dugan, and Stewart 1927) asserts

" further that the solution is unique; however, there is some question whether

this has ever been rigorously proven, as pointed out by Odgers (1957). We shall
accept Schwarzschild’s conclusion of unigueness, with his caveat with regard to
mathematical degeneracy (SES, p. 97), since physically reasonable multiple
solutions have not been encountered. (Hasclgrove and. Hoyle [1956a, p. 523|
have _.2.6_.3& instances of multiple solutions, but with a more general energy-
generation expression than ¢ = f[p, T', composition], which is, of course, hasic to
the theorem [Chandrasckhar 1939, p. 253].)
. To solve the boundary-value problem as stated above, we resort to numerical
_ﬁnmqm:a: of the differential equations, in the technique of this subsection.
Since equations {3.1), (3.2), and (3.3} have singularities at the center, and (3.2)
and (3.3) at the surface, it is not possible to procced all the way from one
boundary to the other, (In several cases of interest, however, it is nol necessary
to do so; see, ¢.g., Gardiner 1951, Iben and Ehrman 1962.) In general, a Vit
ting” procedure is required: a pair of trial integrations, one starting from the
center and one from the sutface, is carried forward until they meet at a common
value of the independent variable, the fitting point. If the four dependent vari-
ables, respectively from the outward and inward integrations, are continuous
across the fitting point, then the boundary-value problem is solved and the
model completed. If the dependent variables do not match at the filting peint,
as is n:.:n generally the case with the first trial pair, then subsequent {rial
integrations are necessary. With the boundary conditions as stated, and a given
mass and (distribution of) composition, two parameters characterize cach inte- .
gration: P and T, the central pressure and temperature, characterize the out-
ward trial; and R and L, the radius and luminosity, characterize the inward
trial. The procedure may he visualized as a search in a four-dimensional space
.?_. a point, with coordinates P., T., R, and L, which wili characterize a pair of
integrations having continuity in the dependent variables at the fitting point.
It will be apparent that, in general, the search for a solution will require a
large number of trial integrations. The. recent successes in the theory of stellar
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evolution are due, in large part, to recognition of special circumstances where
the number of rial integrations can be ingeniously reduced, as in the classical
Cowling (1935, sec Schwarzschild 1946; Wrubel 1958, § 40) model, and as illus-
trated throughout SES. However, we ave interested here in a general procedure
which will ideally be appropriate for any reasonable stellar model, and which
will, morcover, be suitable for automatic computers. . ,

A first atlempt at such a procedure has been introduced by Haselgrove and
Hoyle {1956a). It depends essentially on the fact that there are four dependent
variables to be made continuous at the fitting point, and four parameters for
each pair of trial integrations. If the rates of change of the dependent variables
at the fitting point with respect to each of the four boundary parameters can be
found, then in principle it is possible to find a sct of boundary parameters which

will give continuous dependent ariables across the _.:::m_ﬂ;:r as will =9.....M f \
ilhustrated " TS (g auars EMM\W Wi Sarne & n% d

Denote the four dépendent variables by Vi(§ £ 1,...,4). Let the values
of these at the fitting point, My, 5, from the ontward Arial integration from the
center be indicated with superscript o. Let the values at the fitting point from
the inward trinl integration from the surface be indicated with superscript i. For
a particular pair of trial integrations, the dependent variables will not be con-
tinuous at the fitting point, i.e.,

AV, = ¥im VIO (G=1es ).

Denote the four trial parameters at the boundaries by Ex(k =1, ..., 4} E =
P. and E; = T. pertain to the outward trial integeation; E: = Rand By = L,
to the inward trial integration. Small changes, 5E,, in each one of these will,
after a trial integration, produce variations, 5V, in the dependent variables at
the fitting point. Comparison of, say, two trial oulward integrations, one with
E,, E;, and the other with £, E; 4 3E,, will give the rates of change of the ¥5
with respect 1o Fs. A total of six integrations to the fitting point, three outward
and three inward, suffices to give the rates of change of the V; with respect to
the Eq: . .

sY3 BVE 8V BV

S SE aEe aE, e D)

Figure 3 shows schematically {he marches of a particular dependent variable,
¥, in an outward trial integration, characterized by P, T., and in an inward
trial integration, characterized by R, 1.. The discrepancy at the fitting point
M. ;s indicated by AY, where AY; > Bin the figure. The partiai discrepancy
in ¥, between the value given by the inward trial and that of the {unknown)
solution may be written as —A*Y; and similarly for the outward trial we have
4- A" 1% (the minue sign is appropriate to the case illustrated in Fig. 3). The sum
of these is the total discrepancy:

AY ;= —a'Vi+4TT]. - (3.8)

W@J




4 R, L. SFARS AND ROBFRT R. BROWNLEE 83

*Since the inward trial depends on E; and E \ VY {(Ey,
.. Since the inward o then ¥§ = Vi(Es, E); and 2
-~ small change in V7 is related to small changes in By m:ah E, Eﬂ (to mq.ﬂ order)

i _9¥] avy .
AV = pk ARt o5t AEL. (3.9)

H.n we identify the left-hand side with the partial discrepancy A'Y?, the quanti-
ties AE, and AE, arc then the changes to be made in the original trial values E,

M

. rf.
Fic. 3.—Schematic march of ¥;near the fitting point, M., ;. Top curve: on an inward trial

m_wﬁﬂqwn:au _._.o_._.ha_;n m”__.mw.nc. Rottom curve: on an outward trial integration from Lhe center
ashed curve: desirable continuous march ine: i i .
e g Py arch of ¥; Dotted ._Eo. total fitting discrepancy,
and E,to vanm.._nm an inward solution integtation, i.c., for ¥;a march along the,
n_mmrmm_ curve in Figure 3—if the first-order representation of cquation (3.9) is
.mcm._n.n:m. The partial derivatives are obtained from the appropriate quanlities
in equation (3.7) above. Thus, equation (3.9) becomes

Fpr mm\L. : mmw,... S
uﬁu‘_ﬂ»m, ﬂmpm.. (3.10)

Similarly for the outward intcgration, we have .~ ™

8Y; 8Y7 ,, _
3 Dm_u_lmha.bha. (3.11)

aVi=
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Hence, from cquation (3.8), the discrepancies at the fitting point in each of the
dependent variables are given by

8V, g Vi BV __3Y; . .

AY ;= AE SE OBt 55 A s 0B (1= 1,...,4), (3.12)
4 avs!

Dﬁuvﬁl:le!ﬂlbmw C.ur....ﬁ.a._,:
k-1 dEx

In these four equations the four AY's arc the discrepancies at the fitting point
between an original pair of trial integrations. The sixteen derivatives 0¥ i/8E,
may be calculated by varying cach of the original trial values by 8Ex and, after
performing the respective integrations, obtaining the variations 3V50r 8Y with
respect to the values from the original pair. The four equations may then be
solved simultancously for the unknowns, AEy, . .., AEe Adding these to the
original trial values Fi gives new values, E,, which can be used for a presum-
ably improved pair of inlegrations.

This method of solving the space part of our over-all problem clearly can be
programmed for an automalic computer; an illustrative flow diagram is shown
in Figure 4. It will be evident, however, that because of the non-linear character
of the differential equations, the convergence implied by the linear approxima-
tion of equation (3.9) may even not exist if the first trial pair is very far off in
the values of Bk =1,.. ., 4). Although the procedure has been used suc-
cessfully in a few cases (Haselgrove and Hoyle 19565, 1958, 1959 Blackler
1058 Hoyle 1959, 1960); Sears 1959, 1960; cf. Schwarzschild and Selberg 1962),
no proper analysis of ils range of effectiveness has been undertaken. It would be
desirable, for example, to investigate various values of the fitting point to see if
some one value were peculiarly appropriate for convergence. Such analyses
would of necessity require extensive numerical integrations. Experience indi-
cates that computers with add times of the order of a millisecond require from
half an hour to an hour for a single pair of integrations; this would probably be
too long for an adequale analysis, and a computer with a ten-microsecond add
{ime would be mote suitable.
= remaining part of the over-all problem is the time part. Having con-
structed a single model for 2 given epoch, we wish to determine the change in the
stellar structure over a time interval Af, The simplest approach, which has
proved generally uscful in the stages of stellar evolution inves igated in recent
years, is suggested by the Vogt-Russell theorem: given the mass and the dis-
{ribution of composition, it is possible to construct a ctcllar model. Accordingly,
if we assume the mass to be constant over the time interval Af, we can obtain
the new distribution of composition at the end of this time from the burning
rate ¢ in the previous model. In linear approximation, {he new mass fraction of
hydeogen at the point M, in a rwz_.ong.c:_.i:n star is given by

Yo (M) = Xa (M) = m_.wl, Al (3.18)
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where subscripts 1 and 2 refer respectively to.the previous mode} (known) and
the new model. £ is the energy released per unit mass of hydrogen consumed,
which is about 6 X 10'* ergs per gram. Equation (3.14), evaluated at each point
in model 1, thus gives the new composition at each point in model 2; and one can
now return 1o the space part of the problem and construct model 2 (see Fig. 4).
"The procedure is repeated indefinitely to build up an evolutionary sequence of
stellar models. Equation (3.14) is of course to be supplemented by analogous
cquations when other nuclear processes than hydrogen-burning have effects on
the compasition. Tt may be noted that mixing in a convective region may cffec-
tively change the composition homogeneously over a region, in which case an
average of equation (3.14) is to be taken over the region (see, e.g., SES, p. 100).

‘The degree of accuracy of the lincar approximation of equation (3.14) de-
pends on the size of the time interval Af; for too large a value, the implicit as-
sumption of constant burning rate «(M,) over &/ will not he satisfactory. In the
case of the sun, for example, three steps of Al = 1.5 X 107 years, starting from
the initial main-sequence state, give hardly different results from a single step of
Al = 4.5 X 10? years (Sears 1959); but for later stages of evolution it may be
cxpected that the structure %m__ change more rapidly, as witness the step of
Al = 1.6 seconds needed between two of the models undergoing the helium
flash, computed by Schwarzschild and Hirm (1962). In general, it may be-said
that a little cxperience with the method of this subsection in a particular case
soon teveals a practical upper limit to the time step, since, for the space part,
rather accurale values of the Ei's are needed for the first trials—an automat ic
computer will eventually “lose” the evolutionary sequence if it is permitted to
take too big jumps between models.

As noted in the previous section, it has been realized since the work of San-
dage and Schwarzschild (1952) and of HLL (1955a) that encrgy release via gravi-
|ational coniraction plays a vital role in certain stages of stellar evolution. To
see how 1his is Laken into account in the time part of the problem we must gen-
crlize the conservation-of-energy equation (3.4) above to include other than
nuclear encrgy production, We start from the first law of thermodynamics:

dU = dQ — PdV, (3.15)

where U = internal energy, Q = heat energy, and PdV = mechanical energy
(compression), with /= total pressure and 4V = velume change. Let us now
specify these quantitics per gram. The internal energy of an ideal gas (see, e.g.,
Limber 1958 for a degenerate gas) is, including radiation energy density,

“san Tt it (3.16)

where & = Bolizmann’s conslant, 7T = mass of unit molecular weight (p),
a = radintion densily constant, and P’ = gas pressure. The time rate of change




