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1. Protostar

(a) Find the average density and central temperature (as a function of mass) of an
accreting protostar whose initial radius is given by the expression

R
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if its structure is approximated by a n = 1.5 polytrope with hydrogen mass fraction
X = 0.7 and helium fraction Y = 0.3.

The average density is given by ρ̄ = 3
4π

M
R3 . We know that the radius is given by R = 43.2

1−0.2X
M
M�

R�.

Substituting X = 0.7 and the solar values, we find that R = (1.76× 10−21 cm/g)M . The average
density is then given by
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The central temperature is given by Tc = C µM
R where C = 4.347× 10−16 (HKT Eq. 7.41). One

of the easiest ways to compute mean molecular weight is using 1
µ = 2X + 3

4Y + 1
2Z, which yields

µ = 0.62. Plugging in numbers (fortunately M appears in both the numerator and denominator

and cancels out), we find Tc = 1.52× 105 K .

(b) Suppose the protostar contracts to smaller radius (at constant mass) but maintains a
polytropic structure until its collapse is halted when the central temperature reaches
Tcrit required for hydrogen burning. Show that the greater the mass of the star, the
smaller the density at the point where Tcrit is reached:

ρcrit = 1.52
1
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)3

There are several ways to do this, but I recommend starting with the polytrope equations given
in HKT (Eqs. 7.37-7.42). Perhaps the most straightforward way to do this is to consider the
equation for central temperature (HKT Eq. 7.41, noting that Avogadro’s number NA is roughly
the reciprocal of mp):
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Plug in the expression for R as a function of ρ̄ = ρcrit, then solve for ρcrit:
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Plugging in numbers (from HKT Table 7.1), we find that ρcrit = 1.52 1
M2

(
kBTcrit

µmpG

)3

, as expected.

(c) Noting the criterion for electron degeneracy, estimate the critical mass below which
collapse is halted by electron degeneracy, not by hydrogen burning. After dropping
factors of order unity, show that this mass is related to the Chandrasekhar limit,
MCh, by the approximate relation

Mcrit
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∼
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Evaluate this mass for Tcrit = 5× 106 K and MCh = 1.4 M�.

The criterion for electron degeneracy is that (degeneracy energy) > (thermal energy):
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Note that electron number density ne = ρcrit
µemp

, where ρcrit is the critical density from the previous

portion. Plugging these in and solving for Mcrit, we find:
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Dividing this by the Chandrasekhar mass MCh =
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2
, we find
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Fortunately, all those numbers at the beginning are of order unity, so we can drop them:
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(1)

For our object, µ = 0.62 and µe is the number of baryons per electron. This is given by

µe =
1∑ # electrons

baryon × (mass fraction)
=

1

X + 1
2Y + 1

2Z
= 1.18

Plugging in this value of µ along with the given values of Tcrit and MCh into Equation (2), we

find that Mcrit ∼ 0.018 M� , which is approximately 20 Jupiter masses. Our object is a brown

dwarf!

2. Supernova Shock Revival from Neutrino Heating

(a) Estimate the energy that is required to photodissociate 0.8 M� of Fe into alpha par-
ticles and neutrons. Compare this energy to the bounce shock energy and comment
on the fate of the shock.

First find what particles 56Fe dissociates into: 56Fe = 26p + 30n = 13α + 4n

Then find the energy needed to dissociate a single 56Fe nucleus:

Q = (13mα) + 4mn −m(56Fe)c2

= (56− 55.85)mpc
2

= 2.25× 10−4 erg/nucleus
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Now calculate the total energy needed to photodissociate 0.8 M� of 56Fe:

Ephot = Q(0.8 M�)

= (2.25× 10−4 erg/����nucleus)(0.8 ��M� )(2× 1033
�g/�

�M� )(55.85× 1.67× 10−24
�g/����nucleus)−1

This yields Ephot = 3.9× 1051 erg . The photodissociation energy is larger than the energy of

the bounce Ebounce = 1051 erg, so the shock will not survive with its initial energy.

(b) In the proto-neutron star (with an initial radius 2 × 106 cm), the mean free path of
neutrinos is lν = 30 cm. Estimate the diffusion time for neutrinos to escape from
the proto-neutron star and hence estimate the neutrino luminosity during the initial
neutron-star cooling phase.

The diffusion time is given by tdiff = R2

lc , where R = 2 × 106 cm is the radius and l = 30 cm is

the mean free path. Plugging in numbers yields tdiff = 4.44 s .

The neutrino luminosity Lν is generated by the neutrinos radiating the proto-neutron star’s

gravitational binding energy Ebind ∼ GM2
core

R . Then Lν ∼ Ebind/tdiff. Plugging in numbers yields

Lν = 1.5× 1052 erg .

(c) Assuming that 10% of the neutrino luminosity is absorbed by the infalling outer
core, estimate how long it takes to absorb enough neutrino energy to reverse the
infall of the 0.8 M� outer core and drive a successful supernova explosion with a
typical explosion energy of 1051 erg. Assume the outer core has initial energy per
unit mass ε = −GMFe/RFe. Compare this time to the dynamical (free-fall) timescale
of the proto-neutron star.

Assuming 10% of the neutrino luminosity is absorbed by the core, the total energy absorbed is
0.1Lνt:

0.1Lνt = Einfall + ESN. (2)

Here, ESN = 1051 erg is the energy of the supernova and Einfall is the infall energy of the outer
core. The total infall energy is given by

Einfall = εMouter core

=
GMFe

RFe
(0.8 M�)

= 1.07× 1051 erg

Solving equation (1) for the time, we find

t =
Einfall + ESN

0.1Lν

=
(1.07 + 1)× 1051 erg

0.1(1.5× 1052 erg/s)

which yields t = 1.4 s .

Compare this to the dynamical (free-fall) time of tdyn =
√

R3

GM = 2.9× 10−4 s . It takes many

dynamical timescales to drive the explosion!

(d) Once the star explodes, the duration of the observed supernova is determined by the
photon diffusion time through the expanding ejecta. Provide an order of magnitude
estimate of this diffusion time tdiff , as a function of the ejecta mass M and the explo-
sion kinetic energy E, assuming pure helium ejecta and electron scattering opacity.
Remember that the radius of the ejecta is increasing with time as R = vt, where v
is the ejecta velocity. The duration of the observed supernova is approximately the
time at which t = tdiff . Evaluate tdiff for an ejecta mass of 5 M� and E = 1051 erg.
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First, let’s relate opacity with diffusion time. As we know (see problem 2b), tdiff = R2

lc , where l is
the mean free path.

We can also define the mean free path as l = 1
κρ , so we now have tdiff = R2κρ

c .

Then plug in ρ = 3M
4πR3 to find: tdiff = 3κM

4πRc .

Now, since the radius of the ejecta is increasing with time (R = vt), we have tdiff = 3κM
4πvtc .

But since v is set by the kinetic energy of the explosion (E = 1
2Mv2), we know v =

√
2E/M :

tdiff = 3κM

4π
√

2E/Mtc
= 3κM3/2

4π
√

2Etc
.

And t ∼ tdiff at the duration of the supernova, so t2diff = 3κM3/2

4π
√

2Ec
⇒ tdiff =

(
3κ

4π
√

2c

)1/2

M3/4E−1/4 .

Recall that electron-scattering opacity is given by κes = 0.2(1 + X) cm2 g−1. We’re considering
pure helium, so X = 0 and κes = 0.2 cm2 g−1.

Plugging in all the numbers, we find tdiff = 69 days.

3. Stellar Spectra, Part 1

See attached Jupyter notebook Ay101 ps4-Solved.ipynb for solutions.
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