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1. Protostar

(a)

Find the average density and central temperature (as a function of mass) of an
accreting protostar whose initial radius is given by the expression

R 432 M
Ry 1-0.2X M,

if its structure is approximated by a n = 1.5 polytrope with hydrogen mass fraction

X = 0.7 and helium fraction Y = 0.3.

The average density is given by p = % %. We know that the radius is given by R = 1:13.'5 v %R@.

Substituting X = 0.7 and the solar values, we find that R = (1.76 x 1072! ¢cm/g)M. The average
density is then given by
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The central temperature is given by T, = C“II;‘:/I where C' = 4.347 x 10716 (HKT Eq. 7.41). One
of the easiest ways to compute mean molecular weight is using % =2X+ %Y + %Z , which yields

1 = 0.62. Plugging in numbers (fortunately M appears in both the numerator and denominator
and cancels out), we find ’ T.=152x10° K|

Suppose the protostar contracts to smaller radius (at constant mass) but maintains a
polytropic structure until its collapse is halted when the central temperature reaches
Terit required for hydrogen burning. Show that the greater the mass of the star, the
smaller the density at the point where T, is reached:

1 kBTcrit ’
crit = 1.D2—
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There are several ways to do this, but I recommend starting with the polytrope equations given
in HKT (Egs. 7.37-7.42). Perhaps the most straightforward way to do this is to consider the
equation for central temperature (HKT Eq. 7.41, noting that Avogadro’s number N4 is roughly

the reciprocal of my,):
1 Gum, M
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Plug in the expression for R as a function of p = pcis, then solve for peit:
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Plugging in numbers (from HKT Table 7.1), we find that , as expected.
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(c) Noting the criterion for electron degeneracy, estimate the critical mass below which
collapse is halted by electron degeneracy, not by hydrogen burning. After dropping
factors of order unity, show that this mass is related to the Chandrasekhar limit,
Mey, by the approximate relation

Mcrit N & 5/2 kBTcrit 3/4

Mech 4 mec?

Evaluate this mass for T..4 = 5 x 10° K and Mgy, = 1.4 Meg.

The criterion for electron degeneracy is that (degeneracy energy) > (thermal energy):
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Note that electron number density n. = 5 erit where pcpit is the critical density from the previous
eMp

portion. Plugging these in and solving for M., we find:
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Dividing this by the Chandrasekhar mass M¢p, = ( he )3/2 1 2, we find
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Fortunately, all those numbers at the beginning are of order unity, so we can drop them:

Mcrit N (/%)3/2 (ch,I‘crit>3/4 (1)

MCh 1% meC2

For our object, u = 0.62 and p, is the number of baryons per electron. This is given by
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baryon

He 1.18

Plugging in this value of p along with the given values of Teiy and Mgy, into Equation (2), we
find that MCI‘it ~ 0.018 M@
dwarf!

, which is approximately 20 Jupiter masses. Our object is a brown

2. Supernova Shock Revival from Neutrino Heating

(a) Estimate the energy that is required to photodissociate 0.8 M, of Fe into alpha par-
ticles and neutrons. Compare this energy to the bounce shock energy and comment
on the fate of the shock.

First find what particles °°Fe dissociates into: °Fe = 26p + 30n = 13a + 4n
Then find the energy needed to dissociate a single °6Fe nucleus:

Q = (13my,) + 4m,, — m(°°Fe)c?
= (56 — 55.85)m,,c?
=2.25 x 10~* erg/nucleus



Now calculate the total energy needed to photodissociate 0.8 M, of %Fe:

Ephot = Q(OS M@)
= (225 x 10™* erg/nuelens) (0.8 Mz)(2 x 10* ¢/ M) (55.85 x 1.67 x 10~** ¢/nuetets)

This yields ’Ephot =3.9x 10! erg ‘ The photodissociation energy is larger than the energy of

the bounce Epounce = 10°! erg, so the shock will not survive with its initial energy.

In the proto-neutron star (with an initial radius 2 x 10° cm), the mean free path of
neutrinos is [, = 30 cm. Estimate the diffusion time for neutrinos to escape from
the proto-neutron star and hence estimate the neutrino luminosity during the initial
neutron-star cooling phase.

The diffusion time is given by tgig = %2, where R = 2 x 10° c¢m is the radius and I = 30 cm is

the mean free path. Plugging in numbers yields .

The neutrino luminosity L, is generated by the neutrinos radiating the proto-neutron star’s
2

gravitational binding energy Fhing ~ % Then L, ~ Eying/tair- Plugging in numbers yields

’LV = 1.5 x 1052 erg |.

Assuming that 10% of the neutrino luminosity is absorbed by the infalling outer
core, estimate how long it takes to absorb enough neutrino energy to reverse the
infall of the 0.8 M, outer core and drive a successful supernova explosion with a
typical explosion energy of 10°! erg. Assume the outer core has initial energy per
unit mass e = —-GMp./Rp.. Compare this time to the dynamical (free-fall) timescale
of the proto-neutron star.
Assuming 10% of the neutrino luminosity is absorbed by the core, the total energy absorbed is
0.1L,t:

0.1L,t = Ejngan + Esn. (2)

Here, Esny = 10%! erg is the energy of the supernova and Ej,g. is the infall energy of the outer
core. The total infall energy is given by

Einfall = eMoutcr core

G Mpe
= —(U.
Rre (0.8 M)

=1.07 x 10°! erg

Solving equation (1) for the time, we find

Eintan + Esn
0.1L,

_ (1.07+1) X 10°! erg
0.1(1.5 x 1052 erg/s)

t =

which yields .

Compare this to the dynamical (free-fall) time of

It takes many

tayn = \/ oy =2.9x 107 5|

Once the star explodes, the duration of the observed supernova is determined by the
photon diffusion time through the expanding ejecta. Provide an order of magnitude
estimate of this diffusion time t4i¢, as a function of the ejecta mass M and the explo-
sion kinetic energy F, assuming pure helium ejecta and electron scattering opacity.
Remember that the radius of the ejecta is increasing with time as R = vt, where v
is the ejecta velocity. The duration of the observed supernova is approximately the
time at which t = t4;z. Evaluate tgg¢ for an ejecta mass of 5 My and E = 10°! erg.

dynamical timescales to drive the explosion!



First, let’s relate opacity with diffusion time. As we know (see problem 2b), tqig = %2, where [ is
the mean free path.

2
We can also define the mean free path as [ = L, so we now have tqg = 212,

kp? ¢
Then plug in p = ﬁrj\ég to find: taig = i’;ﬁi

Now, since the radius of the ejecta is increasing with time (R = vt), we have tgig = %.
But since v is set by the kinetic energy of the explosion (E = %Mvz), we know v = /2FE/M:

35M _ 3sM>/?
4m\/2E/Mtc ~ 4mV2Etc’

taig =

o N
And t ~ tqi at the duration of the supernova, so 3,5 = j:y%i = | tgig = <4:\%0) MB3/AE=1/4 |,

Recall that electron-scattering opacity is given by kes = 0.2(1 + X) ecm? g=!. We're considering
pure helium, so X =0 and kes = 0.2 cm? g~ 1.

Plugging in all the numbers, we find

3. Stellar Spectra, Part 1

See attached Jupyter notebook Ay101_ps4-Solved.ipynb for solutions.



