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1. Equation of state and the Chandrasekhar mass

(a) Using the Fermi-Dirac distribution for non-relativistic electrons, derive the relation-
ship between density and pressure, and hence appropriate value of γ and K.

The Fermi-Dirac distribution is given by
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Then pressure is given by
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We can rewrite this in terms of momentum using the fact that the Fermi-Dirac distribution is
essentially a step function:
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0

dp vp3 (4)

where pF =
(

3h3ne
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)1/3
is the Fermi momentum. In the non-relativistic limit, substitute v ∼ p/me

and the definition of the Fermi momentum into equation (4):
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Note that electron number density ne = ρ
µemp

, where µe = 2 for 4He. Then we can write the

electron pressure as
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Then γ = 5/3 and K =
(

8π
3h3

)−2/3 ( 1
5me

)(
1
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)5/3
= 3.135 × 1012 cm4g−2/3s−2 in the poly-

tropic equation P = Kργ .

(b) Using the mass-radius relations for polytropes, derive the mass-radius relation for a
white dwarf. Calculate the radius of a 1 M� white dwarf.

From the discussion of polytropes (HKT Eq. 7.40):
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Here, n = 1
γ−1 = 3/2 for a γ = 5/3 polytrope. From HKT Table 7.1, ξ1 = 3.6538 and

−θn(ξ1) = 0.20330 for n = 3/2. Set this equal to the equation for K from part (a) and solve for

R: R = (1.11 × 1020 cm g1/3) M−1/3 .

For a 1 M� white dwarf, this yields R = 8.81 × 108 cm ≈ 0.01 R� .

(c) Now assume the helium white dwarf is supported by highly relativistic degeneracy
pressure. Use the Fermi-Dirac distribution to derive the appropriate values of γ and
K, and then derive its mass. Express the mass in units of M�.

Now consider relativistic electrons, so v = c. Then
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Again, plugging in the definition for ne = ρ
µemp

, we find that the pressure goes as
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So γ = 4/3 and K =
(
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)−1/3 ( c
4

) (
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=4.9 × 1014 g−1/3 cm3 s−2 (again assuming µe =

2 for 4He).

To get the mass, start with the equation given in class for a polytrope:
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where n = 1
γ−1 = 3 for a γ = 4/3 polytrope. Then
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Use values from HKT Table 7.1: ξ1 = 6.8969 and −θn(ξ1) = −.04243 for n = 3 to find

M = 1.43 M� . This is very close to the Chandrasekhar mass!

(d) Recalculate this mass for a relativistic white dwarf made of pure gold (197Au). Gold
is currently worth $39.47/g. What is the value of this golden dwarf?

The only thing that changes here is the value of µe, which is the number of baryons per electron.
For 197Au, which has atomic number Z = 79, this yields µe = 197

79 = 2.49.

Then use the formula from part (c) to find K = 3.7×1014 g−1/3 cm3 s−2. Plug this into equation

(15) for M to find M = 1.88 × 1033 g= 0.94 M�.

The cost of this golden dwarf is $7.42 × 1034 !

2. Nuclides and kilonova event rates

(a) In the Sun, the mass fraction of r-process nuclides is Xrp ∼ 10−7. The stellar mass
of the Milky Way is MMW ∼ 1011 M�. Assuming similar abundances in other stars,
estimate the total r-process mass within the Milky Way.

Mrp,MW = XrpMMW = 104 M� .
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(b) Assuming r-process elements are produced solely in neutron star mergers, and that
Mrp ∼ 0.03 M� of r-process nuclides were expelled from GW170817, estimate the
number of neutron star mergers that have occurred in the Milky Way, and the
average neutron star merger rate over the τMW ∼ 10 Gyr lifetime of the Milky Way.

The number of neutron star mergers is given by NNSM=(mass of r-process elements)/(mass of

r-process elements per NSM). So NNSM =
Mrp,MW

Mrp
= 3.3 × 105 .

The average rate of neutron star mergers is just NNSM/τMW = 3.3 × 10−5 yr−1 .

(c) Type Ia supernovae synthesize MFe ∼ 0.5 M� of iron, whose mass fraction in the Sun
is XFe ∼ 10−3. Estimate the average Type Ia supernovae rate of the Milky Way.

As in part (b), first compute the total mass of iron in the Milky Way: MFe,MW = 108 M�.

Then follow the procedure in part (c) to compute the number of Type Ia SNe: NIa =
MFe,MW

MFe
=

2 × 108. Divide this by the lifetime of the Milky Way to get the average Type Ia SNe rate:

NIa/τMW = 0.02 yr−1 .

(d) Consider a dwarf galaxy with iron abundance 10−1 that of the Milky Way, and stellar
mass Mgal = 106 M�. Assuming the iron to r-process abundance ratio is the same as
the Milky Way, estimate the total mass of iron and r-process elements in the dwarf
galaxy.

First compute the total mass of iron in the dwarf galaxy: MFe,gal = 10−1XFe,MWMgal = 102 M� .

The ratio of iron to r-process abundance in the Milky Way is: MFe

Mrp
= 108 M�

104 M�
= 104.

Assuming this is the same in the dwarf galaxy, we can compute the total mass of r-process elements

in the dwarf galaxy: Mrp,gal = MFe,gal

(
MFe

Mrp

)−1
= 102 M�(104)−1 = 10−2 M� .

(e) What is the expected number of type Ia supernovae that have occurred in the dwarf
galaxy? What is the estimated number of neutron star mergers in the dwarf galaxy?
Do we expect all dwarf galaxies to be enriched in r-process elements such as Eu-
ropium?

As in parts (b) and (c), compute the number of Type Ia SNe and neutron star mergers:

NIa =
MFe,gal

MFe
= 200

NNSM =
Mrp,gal

Mrp
= 0.33

We do not expect all dwarf galaxies to be enriched in r-process elements.
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