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1. Convection

(a)

If a convective blob accelerates from zero velocity over a mixing length A according
to %vcon = |N|, find the maximum convective velocity v.., in terms of N and the
mixing length A. Express v.,, in terms of «, v, (Viqa — V), p, and c.

We want to solve the differential equation £vco, = [N| to get veon(r). This is pretty straightfor-
ward, since we assume N is constant over a mixing length, so we find:

Veon(r) = |[N|r + C (1)

To solve for the integration constant, we use the boundary condition veon(r = 0) = 0. This
conveniently yields C' = 0.
Now we want the maximum veon, which should occur at the mixing length » = A. The maximum

convective velocity should therefore be |veon = [N|A| We can also rewrite this by plugging in

A=aH, N?> = 4(Vaa — V), and H = P/(pyg):

veon = |NJA 2)
_ (%)1/2(vad_v)1/2aﬂ- (3)
(P 1/2 ”

- (p) (Yot = V)20 (1)

Recall that a polytropic equation of state is given by P = p?, and the sound speed is given by
2 =~P/p. So (P/p)'/? = \/p7—1, and the sound speed is ¢, = /yp7 L.
Plugging this into equation (4) yields | veon = 7~ /%¢5(Vaa — V)20 |

3

o.n Of upgoing convective blobs.

Express the kinetic energy flux Fi.., = pv

Substituting veen from (a), the convective flux is | Fron = p7*3/2(a05)3(vad — V)3/2 .

For a = 2, what is the value of (V,q — V) required for convection to carry the Sun’s
luminosity? What is the corresponding maximum convective velocity v.,,, and how
does this compare to the sound speed c¢,?

The energy flux going through the base of the convective zone r is F' = 4&%. Setting this equal
to the convective energy flux Fo, from part (b), we can solve for (V,q — V):

— L@
P 3/2(acs)3(vad - V)3/2 = 4r2 (5)
(Vaa — V) = Lo \** -2 6
ad ) - p471’7’2 ’Y(acs) ( )

Substituting the given values (note that v = 5/3 for an ideal gas and Lo = 4 x 1033 erg/s is a
good value to remember), we find ‘ (Vaa — V) =12x 1077 ‘

Using the expression from part (a), this corresponds to | veon = 1.1 x 10* ¢cm/s |, which is much

slower than the sound speed ¢, = 2 x 107 cm/s.



(d)

Assuming convection carries all the Sun’s luminosity, use the expression for N? to
find the density gradient in a convection zone.

From the given equation for N2, we know that

dlnp ¢
g{ dr +c2} =N Q

We can solve this for dcllr;p. Plugging in N? = % (V.a — V), H = P/(pg), and equation (6) for
(Vaa — V), we find

1 —N?
dlnp _ 9 (8)
dr g c2
1 g
= 2 (Vu-V) - 0
_ (Lo Ny g (10)
P \4nr3p a?cz 2

Now remember that we're using a polytropic equation of state, so ¢2 = yP/p. Substituting this
into equation (10), we find

dlnp ¢
dr 2

(11)

as expected.

2/3
For the solar values given in part (c), we find that (ﬁ) g—i =2 x 1077 |, which is much

smaller than 1. The first term in equation (11) can then be treated as negligible, so the density

gradient becomes d(li# = %. This suggests that the Sun’s density profile is not strongly dependent

on « at the convective zone.

2. Fully convective cool stars

(a)

The polytropic convective envelope extends nearly all the way to the photosphere.
Use this to derive a scaling between pressure and temperature at the photosphere.

The gas is a polytrope, so P = K p”. We want to get rid of p in this expression by writing it in terms
of P and T. The envelope is an ideal gas, so P = k5T This means that p= %77";’ x PT—1L.

M A
We can plug this scaling into the polytropic equation to write P as a function of 7"

Pox PYTY (12)
P o T (13)

(14)

Use the fact that H- opacity dominates in cool stars and has the scaling xy_ o 177,
the fact that P, = ?2»32 , and the result from part (a) to determine a scaling between
M, R, and Teg for cool stars.

Set the results of parts (b) and (c) equal and plug in ¢ o« MR™2 and k o T°. Keep the
proportionality constant in the polytropic equation of state, since it turns out this constant (we’ll

call it K, as in P = KT5-7) depends on M and R:

KT77 o &2 (15)
Rs

KT+1  MR™>T~° (16)

MR o« KT?*551 (17)



We know K = M~Y2R=3/2 so we can plug this expression for K into equation (29) to get
’Mg’/ZR*U2 o T?577 |, For an ideal gas of v = 5/3, this is ’ M3/2R=1/2 o T23/2 ‘

(c) Main sequence G/K/M stars have L o« M3. Add the lower part of the main sequence
to the HR diagram.

Relate L, M, and T using the fact that for a blackbody, L oc R*T*. First relate L, M, and R
using the solution from part (d):

T L1/4R—1/2 = M3/2R—1/2 x L23/8R—23/4 = L23/8 x M3/2R21/4 (18)
Then get rid of R using R o< L'/272:
L23/8 o M3/2L21/8T721/2 = L71/4M3/2 O(T21/2 (19)

Instead of treating M fixed, we’ll plug the scaling relation for M o L'/3 into equation (36) to

find L=Y/4L'Y/? o T?'/2, which yields .

(d) Draw an evolutionary track for a red giant branch star on an HR diagram.

Since M is fixed for a given star, equation (19) yields 7 a near vertical track on the HR
diagram.

3. Field Color Magnitude Diagram
See attached Jupyter notebook Ay101_ps2_3.ipynb for one solution.

4. Evolution Tracks with MESA



