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1. Convection

(a) If a convective blob accelerates from zero velocity over a mixing length Λ according
to d

drvcon = |N |, find the maximum convective velocity vcon in terms of N and the
mixing length Λ. Express vcon in terms of α, γ, (∇ad −∇), ρ, and cs.

We want to solve the differential equation d
drvcon = |N | to get vcon(r). This is pretty straightfor-

ward, since we assume N is constant over a mixing length, so we find:

vcon(r) = |N |r + C (1)

To solve for the integration constant, we use the boundary condition vcon(r = 0) = 0. This
conveniently yields C = 0.

Now we want the maximum vcon, which should occur at the mixing length r = Λ. The maximum

convective velocity should therefore be vcon = |N |Λ . We can also rewrite this by plugging in

Λ = αH, N2 = g
H (∇ad −∇), and H = P/(ρg):

vcon = |N |Λ (2)

=
( g
H

)1/2
(∇ad −∇)1/2αH (3)

=

(
P

ρ

)1/2

(∇ad −∇)1/2α (4)

Recall that a polytropic equation of state is given by P = ργ , and the sound speed is given by
c2s = γP/ρ. So (P/ρ)1/2 =

√
ργ−1, and the sound speed is cs =

√
γργ−1.

Plugging this into equation (4) yields vcon = γ−1/2cs(∇ad −∇)1/2α .

(b) Express the kinetic energy flux Fcon = ρv3con of upgoing convective blobs.

Substituting vcon from (a), the convective flux is Fcon = ργ−3/2(αcs)
3(∇ad −∇)3/2 .

(c) For α = 2, what is the value of (∇ad − ∇) required for convection to carry the Sun’s
luminosity? What is the corresponding maximum convective velocity vcon, and how
does this compare to the sound speed cs?

The energy flux going through the base of the convective zone r is F = L�
4πr2 . Setting this equal

to the convective energy flux Fcon from part (b), we can solve for (∇ad −∇):

ργ−3/2(αcs)
3(∇ad −∇)3/2 =

L�

4πr2
(5)

(∇ad −∇) =

(
L�

ρ4πr2

)2/3

γ(αcs)
−2 (6)

Substituting the given values (note that γ = 5/3 for an ideal gas and L� = 4 × 1033 erg/s is a

good value to remember), we find (∇ad −∇) = 1.2× 10−7 .

Using the expression from part (a), this corresponds to vcon = 1.1× 104 cm/s , which is much

slower than the sound speed cs = 2× 107 cm/s.
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(d) Assuming convection carries all the Sun’s luminosity, use the expression for N2 to
find the density gradient in a convection zone.

From the given equation for N2, we know that

g

[
d ln ρ

dr
+

g

c2s

]
= −N2 (7)

We can solve this for d ln ρ
dr . Plugging in N2 = g

H (∇ad − ∇), H = P/(ρg), and equation (6) for
(∇ad −∇), we find

d ln ρ

dr
=
−N2

g
− g

c2s
(8)

= − 1

H
(∇ad −∇)− g

c2s
(9)

= −ρg
P

(
L�

4πr2ρ

)2/3
γ

α2c2s
− g

c2s
(10)

Now remember that we’re using a polytropic equation of state, so c2s = γP/ρ. Substituting this
into equation (10), we find

d ln ρ

dr
= − g

c2s

[(
L�

4πr2ρc3s

)2/3
γ2

α2
+ 1

]
(11)

as expected.

For the solar values given in part (c), we find that
(

L�
4πr2ρc3s

)2/3
γ2

α2 = 2× 10−7 , which is much

smaller than 1. The first term in equation (11) can then be treated as negligible, so the density
gradient becomes d ln ρ

dr = g
c2s

. This suggests that the Sun’s density profile is not strongly dependent

on α at the convective zone.

2. Fully convective cool stars

(a) The polytropic convective envelope extends nearly all the way to the photosphere.
Use this to derive a scaling between pressure and temperature at the photosphere.

The gas is a polytrope, so P = Kργ . We want to get rid of ρ in this expression by writing it in terms
of P and T . The envelope is an ideal gas, so P = ρkBT

µmH
. This means that ρ = PµmH

kBT
∝ PT−1.

We can plug this scaling into the polytropic equation to write P as a function of T :

P ∝ P γT−γ (12)

P 1−γ ∝ T−γ (13)

P ∝ T
γ
γ−1 (14)

(b) Use the fact that H- opacity dominates in cool stars and has the scaling κH− ∝ T 9,
the fact that Ps = 2gs

3κs
, and the result from part (a) to determine a scaling between

M , R, and Teff for cool stars.

Set the results of parts (b) and (c) equal and plug in g ∝ MR−2 and κ ∝ T 9. Keep the
proportionality constant in the polytropic equation of state, since it turns out this constant (we’ll

call it K, as in P = KT
γ
γ−1 ) depends on M and R:

KT
γ
γ−1 ∝ gs

κs
(15)

KT
γ
γ−1 ∝MR−2T−9 (16)

MR−2 ∝ KT 9+ γ
γ−1 (17)
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We know K = M−1/2R−3/2, so we can plug this expression for K into equation (29) to get

M3/2R−1/2 ∝ T 9+ γ
γ−1 . For an ideal gas of γ = 5/3, this is M3/2R−1/2 ∝ T 23/2 .

(c) Main sequence G/K/M stars have L ∝M3. Add the lower part of the main sequence
to the HR diagram.

Relate L, M , and T using the fact that for a blackbody, L ∝ R2T 4. First relate L, M , and R
using the solution from part (d):

T ∝ L1/4R−1/2 ⇒M3/2R−1/2 ∝ L23/8R−23/4 ⇒ L23/8 ∝M3/2R21/4 (18)

Then get rid of R using R ∝ L1/2T−2:

L23/8 ∝M3/2L21/8T−21/2 ⇒ L−1/4M3/2 ∝ T 21/2 (19)

Instead of treating M fixed, we’ll plug the scaling relation for M ∝ L1/3 into equation (36) to

find L−1/4L1/2 ∝ T 21/2, which yields L ∝ T 42 .

(d) Draw an evolutionary track for a red giant branch star on an HR diagram.

Since M is fixed for a given star, equation (19) yields L ∝ T−42 , a near vertical track on the HR
diagram.

3. Field Color Magnitude Diagram

See attached Jupyter notebook Ay101 ps2 3.ipynb for one solution.

4. Evolution Tracks with MESA
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