Ay101 Set 2 solutions

Mia de los Reyes

October 19 2019

1. Convection

- (a) If a convective blob accelerates from zero velocity over a mixing length Λ according to $\frac{d}{dr}v_{con} = |N|$, find the maximum convective velocity v_{con} in terms of N and the mixing length Λ . Express v_{con} in terms of α , γ , $(\nabla_{ad} \nabla)$, ρ , and c_s .
 - We want to solve the differential equation $\frac{d}{dr}v_{con} = |N|$ to get $v_{con}(r)$. This is pretty straightforward, since we assume N is constant over a mixing length, so we find:

$$v_{\rm con}(r) = |N|r + C \tag{1}$$

To solve for the integration constant, we use the boundary condition $v_{con}(r=0) = 0$. This conveniently yields C = 0.

Now we want the maximum v_{con} , which should occur at the mixing length $r = \Lambda$. The maximum convective velocity should therefore be $v_{\text{con}} = |N|\Lambda$. We can also rewrite this by plugging in $\Lambda = \alpha H$, $N^2 = \frac{g}{H}(\nabla_{\text{ad}} - \nabla)$, and $H = P/(\rho g)$:

$$v_{\rm con} = |N|\Lambda \tag{2}$$

$$= \left(\frac{g}{H}\right)^{1/2} (\nabla_{\rm ad} - \nabla)^{1/2} \alpha H \tag{3}$$

$$= \left(\frac{P}{\rho}\right)^{1/2} (\nabla_{\rm ad} - \nabla)^{1/2} \alpha \tag{4}$$

Recall that a polytropic equation of state is given by $P = \rho^{\gamma}$, and the sound speed is given by $c_s^2 = \gamma P/\rho$. So $(P/\rho)^{1/2} = \sqrt{\rho^{\gamma-1}}$, and the sound speed is $c_s = \sqrt{\gamma \rho^{\gamma-1}}$.

Plugging this into equation (4) yields $v_{\rm con} = \gamma^{-1/2} c_s (\nabla_{\rm ad} - \nabla)^{1/2} \alpha$

- (b) Express the kinetic energy flux $F_{con} = \rho v_{con}^3$ of upgoing convective blobs. Substituting v_{con} from (a), the convective flux is $F_{con} = \rho \gamma^{-3/2} (\alpha c_s)^3 (\nabla_{ad} - \nabla)^{3/2}$
- (c) For $\alpha = 2$, what is the value of $(\nabla_{ad} \nabla)$ required for convection to carry the Sun's luminosity? What is the corresponding maximum convective velocity v_{con} , and how does this compare to the sound speed c_s ?

The energy flux going through the base of the convective zone r is $F = \frac{L_{\odot}}{4\pi r^2}$. Setting this equal to the convective energy flux $F_{\rm con}$ from part (b), we can solve for $(\nabla_{\rm ad} - \nabla)$:

$$\rho \gamma^{-3/2} (\alpha c_s)^3 (\nabla_{\rm ad} - \nabla)^{3/2} = \frac{L_{\odot}}{4\pi r^2}$$
(5)

$$(\nabla_{\rm ad} - \nabla) = \left(\frac{L_{\odot}}{\rho 4\pi r^2}\right)^{2/3} \gamma(\alpha c_s)^{-2} \tag{6}$$

Substituting the given values (note that $\gamma = 5/3$ for an ideal gas and $L_{\odot} = 4 \times 10^{33}$ erg/s is a good value to remember), we find $(\nabla_{\rm ad} - \nabla) = 1.2 \times 10^{-7}$.

Using the expression from part (a), this corresponds to $v_{\rm con} = 1.1 \times 10^4 \text{ cm/s}$, which is much slower than the sound speed $c_s = 2 \times 10^7 \text{ cm/s}$.

(d) Assuming convection carries all the Sun's luminosity, use the expression for N^2 to find the density gradient in a convection zone.

From the given equation for N^2 , we know that

$$g\left[\frac{\mathrm{d}\ln\rho}{\mathrm{d}r} + \frac{g}{c_s^2}\right] = -N^2 \tag{7}$$

We can solve this for $\frac{d \ln \rho}{dr}$. Plugging in $N^2 = \frac{g}{H}(\nabla_{ad} - \nabla)$, $H = P/(\rho g)$, and equation (6) for $(\nabla_{ad} - \nabla)$, we find

$$\frac{\mathrm{d}\ln\rho}{\mathrm{d}r} = \frac{-N^2}{g} - \frac{g}{c_s^2} \tag{8}$$

$$= -\frac{1}{H}(\nabla_{\rm ad} - \nabla) - \frac{g}{c_s^2} \tag{9}$$

$$= -\frac{\rho g}{P} \left(\frac{L_{\odot}}{4\pi r^2 \rho}\right)^{2/3} \frac{\gamma}{\alpha^2 c_s^2} - \frac{g}{c_s^2}$$
(10)

Now remember that we're using a polytropic equation of state, so $c_s^2 = \gamma P/\rho$. Substituting this into equation (10), we find

$$\frac{\mathrm{d}\ln\rho}{\mathrm{d}r} = -\frac{g}{c_s^2} \left[\left(\frac{L_\odot}{4\pi r^2 \rho c_s^3} \right)^{2/3} \frac{\gamma^2}{\alpha^2} + 1 \right]$$
(11)

as expected.

For the solar values given in part (c), we find that $\left[\left(\frac{L_{\odot}}{4\pi r^2 \rho c_s^3}\right)^{2/3} \frac{\gamma^2}{\alpha^2} = 2 \times 10^{-7}\right]$, which is much smaller than 1. The first term in equation (11) can then be treated as negligible, so the density gradient becomes $\frac{d \ln \rho}{dr} = \frac{g}{c_s^2}$. This suggests that the Sun's density profile is not strongly dependent on α at the convective zone.

2. Fully convective cool stars

(a) The polytropic convective envelope extends nearly all the way to the photosphere. Use this to derive a scaling between pressure and temperature at the photosphere. The gas is a polytrope, so $P = K\rho^{\gamma}$. We want to get rid of ρ in this expression by writing it in terms of P and T. The envelope is an ideal gas, so $P = \frac{\rho k_B T}{\mu m_H}$. This means that $\rho = \frac{P \mu m_H}{k_B T} \propto P T^{-1}$. We can plug this scaling into the polytropic equation to write P as a function of T:

$$P \propto P^{\gamma} T^{-\gamma} \tag{12}$$

$$P^{1-\gamma} \propto T^{-\gamma} \tag{13}$$

$$P \propto T^{\frac{\gamma}{\gamma-1}} \tag{14}$$

(b) Use the fact that H- opacity dominates in cool stars and has the scaling $\kappa_{H-} \propto T^9$, the fact that $P_s = \frac{2g_s}{3\kappa_s}$, and the result from part (a) to determine a scaling between M, R, and T_{eff} for cool stars.

Set the results of parts (b) and (c) equal and plug in $g \propto MR^{-2}$ and $\kappa \propto T^9$. Keep the proportionality constant in the polytropic equation of state, since it turns out this constant (we'll call it K, as in $P = KT^{\frac{\gamma}{\gamma-1}}$) depends on M and R:

$$KT^{\frac{\gamma}{\gamma-1}} \propto \frac{g_s}{\kappa_s}$$
 (15)

$$KT^{\frac{\gamma}{\gamma-1}} \propto MR^{-2}T^{-9} \tag{16}$$

$$MR^{-2} \propto KT^{9+\frac{\gamma}{\gamma-1}} \tag{17}$$

We know $K = M^{-1/2}R^{-3/2}$, so we can plug this expression for K into equation (29) to get $M^{3/2}R^{-1/2} \propto T^{9+\frac{\gamma}{\gamma-1}}$. For an ideal gas of $\gamma = 5/3$, this is $M^{3/2}R^{-1/2} \propto T^{23/2}$.

(c) Main sequence G/K/M stars have $L \propto M^3$. Add the lower part of the main sequence to the HR diagram.

Relate L, M, and T using the fact that for a blackbody, $L \propto R^2 T^4$. First relate L, M, and R using the solution from part (d):

$$T \propto L^{1/4} R^{-1/2} \Rightarrow M^{3/2} R^{-1/2} \propto L^{23/8} R^{-23/4} \Rightarrow L^{23/8} \propto M^{3/2} R^{21/4}$$
(18)

Then get rid of R using $R \propto L^{1/2}T^{-2}$:

$$L^{23/8} \propto M^{3/2} L^{21/8} T^{-21/2} \Rightarrow L^{-1/4} M^{3/2} \propto T^{21/2}$$
(19)

Instead of treating M fixed, we'll plug the scaling relation for $M \propto L^{1/3}$ into equation (36) to find $L^{-1/4}L^{1/2} \propto T^{21/2}$, which yields $L \propto T^{42}$.

(d) Draw an evolutionary track for a red giant branch star on an HR diagram.

Since M is fixed for a given star, equation (19) yields $L \propto T^{-42}$, a near vertical track on the HR diagram.

3. Field Color Magnitude Diagram

See attached Jupyter notebook Ay101_ps2_3.ipynb for one solution.

4. Evolution Tracks with MESA