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1. The scale of the Sun (10 pts total)

(a) (2 pts) Venus has an orbital period of 225 days. Using Kepler’s laws, what is the
semi-major axis of Venus (in AU)?

Start with Kepler’s third law:

Ω2 =
G(M� +M)

a3
(1)

First, consider the Earth-Sun system, assuming that ME �M�:

Ω2
E =

GM�

a3
E

(2)

Now, ΩE can be calculated from known values (Earth’s period is 1 year) and aE is known (it’s 1
AU), so can solve for M�:

M� =
Ω2
Ea

3
E

G
(3)

Then consider the Venus-Sun system, again assuming that MV �M�:

Ω2
V =

GM�

a3
V

(4)

Then solve for aV , substituting equation (9) for M� and converting angular velocities to periods
(P = 2π

Ω ):

aV =

(
GM�

Ω2
V

)1/3

(5)

=

(
Ω2
Ea

3
E

Ω2
V

)1/3

(6)

=

(
PV
PE

)2/3

aE (7)

Plug in known values (PE = 365.25 days, aE = 1 AU) and given values (PV = 225 days), and

find that aV = 0.724 AU .

(b) (2 pts) At conjunction with the Sun, it takes astronomers on Earth 276s to detect
the radio waves that reflect off Venus. Assuming circular orbits for the Earth and
Venus, compute the distance in 1 AU in cgs units.

Note: “conjunction” = Venus is directly between Earth and the Sun. Call the distance between
Earth and Venus dV . The light takes time t to travel distance 2dV :

dV =
ct

2
= 4.14× 1012 cm (8)

From the previous problem, we can compute dV in terms of AU:

dV = aE − aV = (1− 0.724) AU = 0.276 AU (9)

Then combine equations (14) and (15) to convert AU to cm: 1 AU = 1.5× 1013 cm .
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(c) (2 pts each) Use your results above to compute the absolute mass of the Sun in cgs
units. Using its measured angular radius of 16 arcmin, compute the radius of the
Sun in cgs units.

To find the mass, use Kepler’s third law: M� =
Ω2

Ea
3
E

G . Plug in known values in cgs to get

M� = 2.0× 1033 g .

To find the radius, use the definition of angular size: R� = aE sin θ ≈ aEθ. Plug in known values

in cgs to get R� = 6.96× 1010 cm .

(d) (2 pts) The surface temperature of the Sun is T = 5770 K. Using the blackbody
radiation law, compute the luminosity of the Sun in cgs units.

From the Stefan-Boltzmann law for a blackbody:

L = 4πR2σBT
4
eff (10)

Plug in R from part (c) and known values and constants to get L� = 3.83× 1033 erg/s .

2. Stars are gases (10 pts total)

(a) (6 pts) Provide a quantitative relation between the temperature and density of a
star which indicates when we can treat it as a gas throughout its interior, in spite of
the very high densities. Is our assumption valid at the center of the Sun, where the
density is about 100 times the average density?

To check if the center of the Sun can be treated as a gas, we can compare Coulomb energy to
thermal energy. The ideal gas law is reasonable when the thermal energy (∼ kBT ) is larger than
the Coulomb energy (∼ (Ze2)/r). This occurs when

kT � Ze2/r (11)

r � Ze2/kT (12)

where r is the interparticle distance and Z is the charge of the ion (Z = 1 for a gas composed
only of ionized hydrogen). By thinking of the number density n as r−3, we can write r in terms
of mass density: r = n−1/3 = (ρ/µmp)

−1/3. Then we can rewrite equation (12):

ρ� µmp(k/e
2)3T 3 (13)

For atomic hydrogen, µ = 0.5. Plugging this in, our condition for treating a star as an ideal gas
is (in cgs units):

ρ� 1.8× 10−16T 3 (14)

The Sun’s central temperature is Tc ∼ 107 K. By equation (19), we require ρc � 6× 105 g cm−3 .

Since the Sun’s central density1 ρc is only ∼ 150 g cm−3, we may treat the sun as an ideal gas
throughout, and need not consider Coulomb interactions between particles.

(b) (4 pts) If all stars have roughly the same central temperature, use a scaling argument
to determine the stellar mass at which the ideal gas assumption breaks down.

Now we want to know how ρ scales with stellar mass M . (In the following derivation we only
care about approximate scaling arguments, so don’t worry about prefactors.) The internal energy
can be approximated as U ∝ kBT

µmp
M at the central temperature T . Now recall that by the virial

theorem, the internal energy is approximately the gravitational energy Ω ∝ GM2/R. Solve for T
and find that T ∝M/R.

We can then assume that all stars have roughly the same central temperature (which is actually a
good approximation for main-sequence stars), so the central density M ∝ R. Then ρ ∝M/R3 ∝
M−2, so M ∝ ρ−1/2.

1An easy way to get this is by remembering that the Sun’s average density is approximately that of water (∼ 1 g cm−3),
and the Sun’s central density is about 100 times this.
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Plugging in values for the Sun, we find Mlim =
(
ρlim
ρ�

)−1/2

M�. This yields a limiting mass of

M = 0.016M� , which is about the mass of brown dwarfs or giant planets (not stars!). Therefore,

we will never have to consider Coulomb interactions for main sequence stars.

3. A toy star (15 pts total) Assume that a star obeys the density model

ρ(r) = ρc

(
1− r

R

)
. (15)

(a) (4 pts) Find an expression for the central density in terms of R and M .

Solve for total mass M by integrating over the density profile:

M =

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ R

0

r2ρ(r)dr (16)

= 4π

∫ R

0

ρc

(
r2 − r3

R

)
dr (17)

= 4πρc

(
R3

3
− R3

4

)
(18)

=
π

3
ρcR

3 (19)

Then solve for central density: ρc = 3M
πR3 .

(b) (5 pts) Use the equation of hydrostatic equilibrium and zero boundary conditions
to find the pressure as a function of radius. What is the dependence of the central
pressure Pc in terms of M and R?

Doing the same integral as in the previous problem, we know that

m(r) =
4π

3
ρcr

3

(
1− 3r

4R

)
(20)

Now use the equation of hydrostatic equilibrium:

dP

dr
= −Gm

r2
ρ(r) (21)

= −G4π

3
ρcr

(
1− 3r

4R

)
ρc

(
1− r

R

)
(22)

= −4π

3
Gρ2

cr

(
1− 7r

4R
+

3r2

4R2

)
(23)

Integrate equation (23) to get the total pressure:

P (r) = −4π

3
Gρ2

c

∫ (
r − 7r2

4R
+

3r3

4R2

)
dr (24)

= −4π

3
Gρ2

c

[
r2

2
− 7r3

12R
+

3r4

16R2
+ C

]
(25)

Use the zero boundary condition (P (R) = 0) to solve for the integration constant C:

P (R) = −4π

3
Gρ2

cR
2

[
1

2
− 7

12
+

3

16
+

C

R2

]
= 0 (26)

C = R2

(
−1

2
+

7

12
− 3

16

)
(27)

= − 5

48
R2 (28)
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Now let’s solve for the central pressure Pc = P (r = 0):

Pc = −4π

3
Gρ2

cC (29)

=
5π

36
Gρ2

cR
2 (30)

Okay, finally we can substitute stuff into equation (30) to write the full equation for pressure:

P (r) = −4π

3
Gρ2

c

[
r2

2
− 7r3

12R
+

3r4

16R2
− 5

48
R2

]
(31)

= Pc

[
1− 24

5

( r
R

)2

+
28

5

( r
R

)3

− 9

5

( r
R

)4
]

(32)

So we find that P (r) = Pc × f
(
r
R

)
as expected.

Now plug in the answer for part (a) to get Pc as a function of M and R:

Pc =
5π

36
G

(
3M

πR3

)2

R2 (33)

We can simplify this to Pc = 5
4π

GM2

R4 .

(c) (3 pts) What is the central temperature Tc, assuming an ideal gas equation of state?
How does it scale with mean particle mass?

Ideal gas: P = ρkBT
µmp

Solve this for central temperature, plugging in answer from (b) for Pc and answer from (a) for ρc:

Tc =
Pcµmp

ρckB
(34)

=
5π
36GρcR

2µmp

kB
(35)

=
5π
36G

3M
πR3R

2µmp

kB
(36)

This simplifies to Tc = 5GM
12R

µmp

kB
which scales as Tc ∝ µmp . (µmp is the mean particle mass.)

(d) (3 pts) Find the ratio of radiation pressure to gas pressure at the center of the star as
a function of total stellar mass in M�. At what mass does radiation pressure become
comparable to the ideal gas pressure?

Radiation pressure is given by Prad = 1
3aoT

4. The ratio at the center of the star is therefore

Prad

Pgas
=

1

3
ao

T 4
c

5
4π

GM2

R4

(37)

Then plug in Tc from part (c):

Prad

Pgas
=

1

3
ao

(
5GM
12R

µmp

kB

)4

5
4π

GM2

R4

(38)

=
125π

15552
aoG

3M2

(
µmp

kB

)4

(39)

Assuming solar composition (µ = 0.62), we can rewrite this in terms of solar masses as:

Prad

Pgas
= 7.2× 10−4

(
M
M�

)2

When Prad

Pgas
= 1, the mass of the star is M ≈ 37M� . Note that this

is not an exact result, since our formula for Tc assumes that radiation pressure is negligible.
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4. Cluster color magnitude diagram (15 pts total)

The goal of this problem is to make a color magnitude diagram for M67, a nearby open
cluster, using Gaia data.

See the provided Jupyter notebook “Ay101 ps1 4.ipynb” for one potential solution.

5. Using the MESA stellar evolution code (10 pts)

(a) (4 pts) Run the default stellar model located in mesa/star/work/. At time step 10,
what is the core temperature and surface temperature of the model?

The core temperature is log Tc = 5.48 [K], or Tc = 3.012× 105 K . The surface temperature is

Teff = 3452 K .

(b) (6 pts) Evolve a 1M� model up the red giant branch. What is the surface temperature
and radius of the star when its luminosity reaches 50L�?
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