Ay123 Problem Set 5

Due Tuesday, December 10, 5pm

1. Cepheid Variable (10 points)

The mass and mean radius of a typical Cepheid variable are $\log(M/M_{\odot}) = 0.8$ and $\log(R/R_{\odot}) = 1.4$.

(a) Use the continuity equation to show that a radial perturbation that satisfies $\Delta \rho / \rho = -\Delta V / V$ (where V is volume) implies that

$$\frac{\partial}{\partial r}\frac{\Delta r}{r} = 0, \qquad (1)$$

where Δr is the radial Langrangian displacement.

- (b) For a radial pulsation satisfying equation 1, use the continuity equation to relate $\Delta \rho / \rho$ to $\Delta r / r$.
- (c) Use this relation in the momentum equation to show that $\omega^2 = (3\gamma 4)g/r$. What does this imply about the stability of the star when $\gamma < 4/3$?
- (d) For $\gamma = 5/3$, derive an expression relating the luminosity of the star to its temperature, pulsation period, and surface gravity.
- (e) Using $\gamma = 5/3$, for a pulsation amplitude $\Delta r/r_0 = 0.1$, compute the fractional surface temperature perturbation $\Delta T_{\rm eff}/T_{\rm eff}$ and luminosity perturbation $\Delta L/L$.

2. Binary Stars (10 points)

The minimum orbital separation of a star with mass M and radius R in a binary star system is

$$a_{\min} \simeq \frac{5}{2} \left(\frac{M_{\text{tot}}}{M}\right)^{1/3} R$$

where M_{tot} is the total mass of the binary system.

(a) Show that the minimum orbital period of the binary is

$$P_{\min} \simeq 5\pi \left(\frac{15}{8\pi}\right)^{1/2} (G\rho)^{-1/2},$$

where ρ is the average stellar density. Evaluate P_{\min} for a binary system of two red giants with $\rho = 10^{-6} \text{ g/cm}^3$, two Sun-like stars with $\rho = 1 \text{ g/cm}^3$, two white dwarfs with $\rho = 10^6 \text{ g/cm}^3$, and two neutron stars with $\rho = 3 \times 10^{14} \text{ g/cm}^3$.

(b) Consider a red giant of $M_1 = 1 M_{\odot}$, with a core mass $M_c = 0.5 M_{\odot}$, envelope mass $M_e = 0.5 M_{\odot}$, and radius $R_1 = 100 R_{\odot}$. It undergoes a common-envelope event with a low-mass secondary star of mass M_2 and radius R_2 , which ejects the envelope of the red giant. The α prescription for common-envelope events predicts the final orbital separation a_f :

$$\alpha \left(\frac{GM_cM_2}{2a_f} - \frac{GM_1M_2}{2a_i} \right) = \frac{GM_cM_e}{R_1} \,. \tag{2}$$

Solve equation 2 for a_f . Show that when α is of order unity and $M_2 \ll M_e$, the final orbital separation satisfies $a_f \ll a_i$, and equation 2 reduces to

$$a_f \simeq \frac{\alpha}{2} \frac{M_2}{M_e} R_1$$

- (c) A stellar merger will occur if the final separation a_f between the secondary and the primary's core is smaller than the minimum orbital separation possible for the secondary star. By replacing a_f with a_{\min} for the secondary, and using $M_2 \ll M_c$, find the minimum secondary mass that can eject the envelope of the primary without merging with the core of the primary. Evaluate this mass for $\alpha = 0.5$ and typical brown dwarf radius $R_2 = 0.1 R_{\odot}$.
- 3. Stellar Spectra, Part II (15 points)

Download and complete the Jupyter notebook problem from the course website. You should turn in a printout of your completed notebook.

4. MESA Project, Part 2 (15 points)

Complete the MESA Project as instructed in Homework 4.