
Ay101 Final Exam

Due Friday, December 13, 5:00 pm

Time allowed: 3 hours from when you open or print the PDF. Do not look beyond page 2 until you are
ready to start the exam.

You may use one page (one side) of pre-written notes during the exam. Turn in this page of notes with
the exam. Otherwise, you may not use the class notes, textbook, or online resource during the exam. You
may use an unprogrammable calculator. Page 2 provides some possibly useful constants. You should have
only a copy of this exam, your page of notes, blank paper, a pencil, and (optionally) a calculator.

Provide clear explanations for all of your equations. If we cannot follow your logic, then we cannot
give you credit. For problems with multiple parts, you will sometimes need to use the answer you find
in an earlier part of a problem to complete the rest of the question. If you cannot get an answer for the
earlier part, take your best guess and use this answer to complete the rest of the problem. You will not be
penalized multiple times for your previous incorrect answer.

Attempt only five questions of your choice.
Each question is worth 6 percentage points on your final grade. The entire exam is worth 30% of your

final grade.
Please return solutions to Mia or Jim by email or in person, or under Jim’s door.
This exam is to be taken under the guidelines outlined by Caltech’s Honor Code.
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Ay 123: Useful Constants and Units

Constant/Unit Symbol Value
Gravitational Constant G 6.67× 10−8 cm3 g−1 s−2

Speed of light c 3× 1010 cm s−1

Planck constant h 6.63× 10−27 erg s
h 4.14× 10−21 MeV s
hc 1240 eV nm = 1240 MeV fm
h̄c 197 eV nm = 197 MeV fm

Avogadro number NA 6.022× 1023 mol−1

proton mass mp 1.6726× 10−24 g
neutron mass mn 1.6749× 10−24 g
α particle mass mα 6.6442× 10−24 g
electron mass me 9.1× 10−28 g = 0.511 MeV c2

electron charge e 4.8× 10−10 esu (cgs)
e 1.6× 10−19 C (SI)
e2 1.44 eV nm

Boltzmann constant kB 1.38 × 10−16 erg K−1

kB 8.6× 10−5 eV K−1

Stefan-Boltzmann constant σ 5.67× 10−5 erg cm−2 s−1 K−4

Radiation constant a 4σSBc−1 = 7.5× 10−15 erg cm−3 K−4

Rydberg constant R 2.18× 10−11 erg
R 13.6 eV

Bohr radius a0 5.3× 10−9 cm
Proton radius rp 1× 10−13 cm
Thomson cross-section σT 6.7× 10−25 cm2

Solar mass M� 1.99× 1033 g
Solar radius R� 7× 1010 cm
Solar bolometric luminosity L� 4× 1033 erg s−1

Solar Teff Teff,� 5780 K
Astronomical Unit AU 1.5× 1013 cm
parsec pc 3.26 ly = 3.1× 1018 cm
1 eV in erg 1.6× 10−12 erg
1 Å 10−8 cm
year ∼ π × 107 s
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Problem 1: Convection (8 points)

a) (4 points) By considering the stability of a parcel of gas that expands and contracts adiabatically, show
using diagrams and text that the condition for stability in a star obeying the ideal gas law is

−dT
dr

<
γ− 1

γ

µmpg
kB

Be sure to explain the physical assumptions.

b) (3 points) Use the relevant stellar structure equations for a radiative star to show that this equation
reduces to

L(r) <
γ− 1

γ

16πacGmp

3kB

T3µM(r)
ρκ

where L(r) and M(r) are the luminosity and enclosed mass at radius r, κ is the opacity, and a is the
radiation constant.

c) (1 point) From the result above, give two reasons why convection tends to be triggered in regions of
partial hydrogen/helium ionization within stars.

Problem 2: Star Clusters (8 points)

a) (2 points) Construct a Hertzsprung-Russel diagram of a newborn stellar cluster, assuming stars rang-
ing from 0.1 − 100 M�. Indicate the approximate maximum and minimum stellar luminosities (in
units of L�), assuming L ∝ M4. Indicate the approximate maximum and minimum stellar tempera-
tures (in cgs units), assuming Teff ∝ M1/2.

b) (2 points) The absolute magnitude of the Sun is roughly M = 5. Compute the absolute magnitude of
the highest and lowest mass stars in the cluster.

c) (2 points) Estimate how the main-sequence lifetime of a star scales with its mass. Compute the main-
sequence turnoff mass for clusters of age 107 and 1010 years. Construct HR diagrams of clusters with
these ages.

d) (2 points) In your cluster of age 1010 years, indicate the approximate locations of the red giant branch
and the white dwarf cooling track. Are there any white dwarfs in the younger cluster, and why or
why not?

Problem 3: Timescales, Temperature, and Diffusion (8 points)

a) (1 point) Explain the Kelvin-Helmholtz timescale. What is the Kelvin-Helmholtz timescale for the
Sun?

b) (1 point) Provide an estimate for the lifetime of the Sun on the main sequence.

c) (3 points) Estimate the central temperature of the Sun from first principles.

d) (3 points) Discuss why radiative transport is a diffusion process. For a typical opacity of κ = 1 cm2/g,
calculate the typical mean free path of a photon in the Sun, and estimate the time it takes for a photon
from the core of the Sun to reach the surface.
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Problem 4: Stellar Structure Equations (8 points)

For increasing mass along the main sequence, the dominant source of opacity changes, the dominant nu-
clear reaction changes, and the dominant source of pressure changes. We’ll assume that the change in
nuclear energy generation occurs at 1 M�, the change in opacity occurs at 5 M�, and the change in equa-
tion of state happens at 25 M�. You therefore have four mass regimes: (1) M < M�, (2) M� ≤ M ≤ 5 M�,
(3) 5 M� ≤ M ≤ 25 M�, and (4) M ≥ 25 M�.

a) (2 points) Write down the four equations of stellar structure, assuming radiative energy transport. In
a sentence, describe the meaning of each equation.

b) (1 point) Provide a fifth equation needed to solve the stellar structure equations, in both regimes 1-3
and regime 4, and briefly state its meaning.

c) (3 points) For each regime, describe

(a) How and why the nuclear energy generation rate scales with central temperature.
(b) How and why the opacity scales with internal density and temperature.
(c) How and why the central pressure scales with density and temperature.

d) (1 point) Use the central temperature of the Sun and its average density to estimate the ratio of radia-
tion to gas pressure in its interior.

e) (1 point) Identify which of the five structure equations will change for a white dwarf, and provide at
least one new equation applicable to these stars.

Problem 5: Polytropes (8 points)

A polytropic equation of state is one that satisfies

P = Kρ1+1/n

where K and n are independent of radius.

a) (2 points) Give two situations in stellar evolution for which polytropic solutions are appropriate,
explaining clearly the value of n that is applicable in each case.

b) (2 points) What value of n corresponds to an object of uniform density? Make plots of density as a
function of radius for a polytrope with a large value of n, compared to a polytrope with a small value
of n.

c) (2 points) For a polytropic equation of state, the pressure and internal energy density per unit mass,
E, are related by P = ρE/n. The total energy is simply W = U + Ω, where U is the total internal
energy of the star. Using the Virial theorem, derive an equation that relates W and Ω.

d) (2 points) A stable star must have negative total energy. Use this fact to derive a stability criterion (in
terms of n) based on your result above.

Problem 6: White Dwarfs (8 points)

a) (3 points) Starting from the expression for pressure

P =
1
3

∫ ∞

0
v p

dn
dp

dp , (1)

and using the Pauli exclusion principle
dn
dp
≤ 8πp2

h3 , (2)
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Show that the electron pressure in a completely degenerate plasma is

P =
8πc
3h3

∫ pF

0

p/(mec)√
1 + p2/(mec)2

p3 dp (3)

where me is the electron rest mass, and pF is the Fermi momentum. Express the Fermi momentum in
terms of the electron number density ne.

b) (3 points) Consider how this expression can be simplified in the non-relativistic and ultra-relativistic
limits. By equating relativistic and non-relativistic degeneracy pressure, derive the critical density,
ρcrit, for the transition between these two extremes assuming, for simplicity, that ne = ρ/mH in deter-
mining the electron number density.

c) (2 points) In simple terms (without further derivations), explain why the radius of a degenerate, non-
relativistic white dwarf becomes smaller as its mass increases and why there is a maximum stable
mass in the ultra-relativistic case.

Problem 7: Nuclear Reactions (8 points)

a) (1 point) Calculate the mean thermal energy of a proton in the core of a star where hydrogen is burning
at a temperature of 107 K.

b) (2 points) Estimate the closest distance such energy could bring two protons and compare this with
the proton radius.

c) (2 points) Using the fact that in a Maxwellian distribution, the number of particles above energy E
falls off exponentially, estimate the fraction protons in the core of the Sun with enough energy to
overcome the Coulomb barrier.

d) (3 points) Without any lengthy derivation, explain how the Coulomb barrier is overcome and why,
for non-resonant reactions, there is a preferred energy at which fusion occurs.

Problem 8: Helioseismology (8 points)

a) (3 points) Use the linearized momentum equation

ρ
∂

∂t
v = − ∂

∂x
δP (4)

the linearized continuity equation
∂

∂t
δρ = −ρ

∂

∂x
v . (5)

and adiabatic equation of state
δP
P

= γ
δρ

ρ
(6)

Assuming constant density ρ and pressure P, derive a wave equation and show that pressure distur-
bances travel at the sound speed

c2
s =

γP
ρ

.

b) (3 points) From your wave equation, show that the spacing between a star’s oscillation mode frequen-
cies is ∆ω = πcs/R. Show (e.g., using the Virial theorem) that this implies ∆ω ∼

√
GM/R3, where

M and R are the mass and radius of the star.

c) (2 points) Summarize what can be measured from quantitative studies of pressure waves within stars
like the Sun.
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Problem 9: Stellar Evolution (8 points)

a) (1 point each) For each of the following phases of a 1 M� star’s evolution, describe the basic stellar
structure, the approximate surface properties (R and Teff), and the dominant internal power source.

(a) Hayashi track

(b) Main sequence

(c) Red giant branch

(d) Red clump

(e) Asymptotic giant branch

(f) White dwarf

b) (2 points) Which of these phases of evolution is avoided in a 3 M� star and why?
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