1. Salpeter’s Initial Mass Function (IMF) is of the form:

\[\Phi(M) \propto M^{-(1+x)} \]

By considering only stars more massive than 1 solar mass (whose lifetimes are shorter than the age of the Galaxy) and stellar luminosities \(L \propto M^4 \), find the slope \(x \) such that equal numbers of stars are seen in a homogeneous isotropic region within equal logarithmic ranges of luminosity. What type of star dominates the counts if the slope \(x \) is flatter than this value?

2. The star formation history of a stellar population is often represented by an exponential decay from an initial burst, viz: \(\Psi(t) \propto \exp(-t/\tau) \) where \(\tau \) is some time constant. If the IMF \(\Phi(M) \) is invariant, obtain an expression for the observed number of stars of a given mass at time \(t \) in terms of its main sequence lifetime. Comment briefly on the differences you would expect to see in the H-R diagrams of a population where \(\tau = 0.1 \) Gyr and \(\tau = \infty \) for a population viewed after 12 Gyr.

For a population formed instantaneously with a Salpeter IMF and an upper mass cut-off at \(2 M_\odot \), estimate the time after which most light comes from post-main sequence stars. Assume the time a star spends on the main sequence is \(\propto M/L \).

3. Prove that if a homogeneous sphere of a pressureless fluid with density \(\rho \) is released from rest, it will collapse to a point in a freefall time \((3\pi/32G\rho)^{1/2} \).

4. Suppose a star is moving on a purely radial orbit in the potential \(\Phi = (2\pi G \rho/3)r^2 \), where the density \(\rho \) is a constant. Write down an equation for the acceleration of the star and hence show it undergoes simple harmonic motion about the center with period \((3\pi G \rho)^{1/2} \).

5. Show that the potential generated by the spherical density distribution

\[\rho(r) = (M/4\pi a^3) \left[a^4 / (r^2 (r+a)^2) \right] \]

is:

\[\Phi(r) = (GM/a) \ln \left[r / (r+a) \right] \]

where \(M \) and \(a \) are constants. Verify that the total mass of the system is \(M \). Show that the circular speed is constant at small radii \(r \ll a \) and declines as \(r^{-1/2} \) at large radii.