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I. OVERVIEW

In this lecture, we will depart from the study of specific spacetimes and ask some more global questions about
cosmology in GR. Subject to certain “energy conditions” on the behavior of the matter, we can prove some general
theorems about the spacetime that go beyond the highly symmetrical FRW solution.

This lecture will address the most important such issue for cosmology – the existence of an initial singularity. The
other classical application of global structure techniques is to black holes (the area theorem, inevitability of forming
a singularity).

There is no assigned reading for this lecture. MTW Ch. 34 discusses global structure, but mainly in the context
of black holes. A comprehensive but mathematical treatment can be found in Hawking & Ellis, and an abbreviated
version in Wald Ch. 9. This treatment provides the mathematical rigor that my “proofs” in class will not (this is a
physics class, after all).

These references pre-date the discovery of Λ; fortunately it is easily incorporated into the theory, so I have taken
the liberty of doing so.

II. ENERGY CONDITIONS

Most global theorems in GR are based on the assumption of energy conditions – inequalities describing the behavior
of the stress-energy tensor. Some are exactly valid for all known types of matter, and some may be violated in situations
where the cosmological constant is important. The key energy conditions of interest to us are as follows:

• The strong energy condition (SEC) – this states that for any observer with a timelike 4-velocity u, the observed

energy density ρ = T(u, u) and the isotropic pressure p = 1
3

∑3
i=1 T(eî, eî) = 1

3 (T + ρ) satisfy ρ + 3p ≥ 0.

• The null energy condition (NEC) – this states that for any null vector k, that T(k, k) ≥ 0.

For a perfect fluid, the null energy condition is equivalent to ρ + p ≥ 0.
It is easily seen that “normal” matter, radiation, electromagnetic fields ... satisfy both the strong and null energy

conditions. However, a cosmological constant (for Λ > 0) satisfies the null energy condition but not the strong energy
condition.

We note that the strong energy condition can be re-written in the form

R(u, u) =
1

8π

[

T(u, u) − 1

2
Tg(u, u)

]

=
1

8π

(

ρ +
1

2
T

)

=
1

8π

[

ρ +
1

2
(−ρ + 3p)

]

=
1

16π
(ρ + 3p) ≥ 0 (1)

for all timelike u, and the null energy condition can be written as R(k, k) ≥ 0 for null k. Continuity arguments then
tell us that the strong energy condition implies the null energy condition.

Since we appear to have a cosmological constant in the real universe we should consider what happens when there
is a Λ but all other matter fields obey the strong energy condition. In this case (which I will denote ΛSEC), we have

R(u, u) =
1

16π
(ρtot + 3ptot) =

1

16π
(ρm + 3pm) − Λ ≥ −Λ. (2)
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III. CONGRUENCES AND THE RAYCHAUDHURI EQUATION

Let us next consider a set of geodesics that fills the spacetime (this is called a congruence). These geodesics
are parameterized by their own internal parameters α, β, γ and by an affine parameter λ. We wish to consider the
properties of the tangent vector u, which we may now regard as a vector field in the spacetime; we assume it is
normalized to u · u = s.

Two cases will warrant our attention in this class: the case where the congruence is of timelike geodesics, where
s = −1, and to null geodesics with s = 0. We now focus on the case of timelike geodesics (s = −1). The same
developments can be carried over to the case of null geodesics (s = 0) with little difficulty. The main difference is
that if u is a timelike vector, then the subspace of TPM orthogonal to u is a spacelike vector space. But k is a null
vector, then the subspace of TPM orthogonal to k is instead spanned by k and two spacelike vectors {ex, ey}. This
reduces the 3× 3 tensors that we will encounter here to 2× 2 tensors. The null geodesic version of the theory plays a
critical role in the theory of black holes (e.g. the proof of the horizon area increase theorem). But for cosmology it is
the timelike version of the theory that is critical.

We are interested in the evolution of the velocity gradient tensor Hβα = uα;β. The geodesic nature of the congruence
implies that

Hβαuβ = uα;βuβ = ∇uuα = 0. (3)

Furthermore the normalization gives

Hβαuα = uαuα;β =
1

2
(u · u),β = 0. (4)

Thus we see that H is orthogonal to u (on both indices – important since H need not be symmetric).

A. Expansion and vorticity

Next define the expansion to be the contraction of H : θ = Hα
α. This is nothing but the trace of the velocity

gradient; for timelike geodesics it is simply the generalization of the Newtonian div v. We then find

∇uθ = uαHβ
β;α = uαuβ

;βα = uαuβ
;αβ − uαRβ

γβαuγ = uαuβ
;αβ − Rγαuγuα. (5)

The first term simplifies because – using the product rule and the geodesic equation –

uαuβ
;αβ = (uαuβ

;α);β − uα
;βuβ

;α = 0 − Hα
βHβ

α. (6)

Thus we arrive at the result:

∇uθ = −Hα
βHβ

α − Rγαuγuα. (7)

This is a key result: the expansion changes along a trajectory in accordance with the square of the velocity gradient,
and the Ricci tensor component R(u, u).

A second result involves the vorticity, defined by ωβα = H[βα]. We see that

∇uωβα = uγu[β;α]γ = uγ(u[β|;γ|α] − R[β|
δ
γ|α]uδ) = (uγu[β|;γ);|α] − uγ

;[αuβ];γ − uγuδR[β|δγ|α]. (8)

Here the first term is zero due to the geodesic equation, and the last term is zero due to the symmetry of the Riemann
tensor. If at some particular instant ω = 0 then Hβα is symmetric and the second term vanishes as well. It follows
that if ω = 0 at one point on one of the geodesics, then it remains zero along the entire length of the geodesic. A
congruence where this holds for all geodesics in some neighborhood of one of them is said to be irrotational. The
cases of greatest interest to us will be irrotational flows.

B. Hypersurface-orthogonal congruences

A particular example of an irrotational flow is the set of geodesics projected normal to some spacelike surface Σ
(specified by f = 0 where f is a smooth scalar field with df timelike). Then we may write the 4-velocity of the
timelike geodesics as a 1-form:

u = α df + c, (9)
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where α 6= 0 and c = 0 on Σ. If c = 0 on Σ (i.e. when f = 0) then we may write c = fβ. We then find that the
vorticity 2-form is

ω = du = dα ∧ df + df ∧ β + fdβ. (10)

On Σ, i.e. at f = 0, we have f = 0 and df = α−1u, so that

ω = u ∧
(

−α−1dα + α−1β
)

. (11)

But then ωβα = u[βvα] for some v. Combining this with the orthogonality rule that ωβαuα = 0, we see that ω = 0
(this is most easily shown in a local orthonormal basis where u is the 4-velocity). Thus the congruence of geodesics
orthogonal to Σ is indeed irrotational.

Given such a spacelike surface, we may define the extrinsic curvature (or second fundamental form) as the gradient
of the velocity field of the geodesics projected normal to it: Kαβ ≡ −Hβα = −uα;β. Since K is orthogonal to u, it is a

symmetric rank
(

0
2

)

tensor field on the surface Σ, i.e. at any P we have K ∈ T ∗
PΣ×T ∗

PΣ. The first fundamental form

γ is the metric γαβ induced by the geometry of the manifold M – that is, γ is the dot product g with its domain
restricted to vectors tangent to Σ, i.e. in TPΣ ⊂ TPM.

As its name suggests, the extrinsic curvature describes whether observers moving normal to the spatial slice are
moving toward each other or away from each other. For the FRW universe, and for the constant-t slices Σt, it is easily
seen that Kαβ = −Hγαβ . But it is also easy to see that a curved 3-surface embedded in flat 4-dimensional spacetime
can have K 6= 0.

Some additional intuition can be gained by considering 2-dimensional surfaces embedded in R
3. If we have a surface

that is tangent to the xy-plane at the origin, then it is given to quadratic order by:

z =
1

2
cxxx2 + cxyxy +

1

2
cyyy2 + ... . (12)

The normal vector n to such a surface is (−cxxx− cxyy,−cxyx− cyyy, 1) (to linear order) and its gradient (projected
onto the xy-plane, i.e. the space tangent to the surface at the origin) is

−nα;β =

(

cxx cxy

cxy cyy

)

. (13)

Thus in flat space the extrinsic curvature describes whether the surface “curves up” (positive definite), “curves down”
(negative definite), is “saddle-shaped” (one + and one − eigenvalue), or is “cylinder-curved” (one zero eigenvalue).
But the construction above generalizes to surfaces Σ embedded in arbitrary manifolds M.

C. The timelike geodesic case

Now that H is a purely spacelike 3×3 tensor on the space orthogonal to u, we may decompose it into an expansion,
a vorticity, and a shear:

Hβα =
1

3
θhβα + ωβα + σβα, (14)

where hβα ≡ gβα + uβuα is the spatial 3-metric orthogonal to u, ω is antisymmetric, and σ is symmetric, traceless,
and orthogonal to u. Squaring this and using (anti)symmetry properties and the tracelessness of σ, we find that

Hα
βHβ

α =
1

3
θ2 + ωαβωβα + σαβσαβ . (15)

Returning to Eq. (7), we find that, following along a geodesic,

dθ

dτ
= −1

3
θ2 − ωαβωβα − σαβσαβ − Rγαuγuα. (16)

This is the Raychaudhuri equation.
Here the third term is non-positive since it is the square of a tensor defined on a spatial slice. The second term

vanishes if the flow is irrotational. The fourth term is non-positive if the strong energy condition holds. We thus see
that

dθ

dτ
≤ −1

3
θ2 (SEC + irrotational). (17)
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Now θ/3 is the angular-averaged velocity gradient, i.e. the angular-average Hubble rate if an observer following one of
our geodesics measures the positions of the neighboring geodesics. Thus Eq. (17) says something about the behavior
of the Hubble rate as a function of time – namely that it is non-increasing, and that d(θ/3)/dτ + (θ/3)2 ≤ 0. For an
FRW Universe, since θ/3 = ȧ/a, this says that ä ≤ 0, i.e. that cosmic expansion is non-accelerating. But Eq. (17) is
a generalization of this result to arbitrary geometry. Of course, in the real Universe the presence of the cosmological
constant (SEC violation) circumvents this theorem.

If there is a cosmological constant, but other fields obey the SEC, then Eq. (17) should be replaced with

dθ

dτ
≤ −1

3
θ2 + Λ (ΛSEC + irrotational). (18)

If |θ| ≤
√

3Λ then Eq. (18) does not say anything very interesting. If θ is outside this range, however – if the local

Hubble rate is larger than
√

Λ/3 – then there is a profound implication. Let us define the new variable

ξ =

√

3

4Λ
ln

θ +
√

3Λ

θ −
√

3Λ
, (19)

which is in the range ∞ > ξ > 0 for
√

3Λ < θ < ∞. Then

dξ

dθ
=

√

3

4Λ

(

1

θ +
√

3Λ
− 1

θ −
√

3Λ

)

=
1

−θ2/3 + Λ
, (20)

and hence

dξ

dτ
=

dξ

dθ

dθ

dτ
≥ 1. (21)

[Technical note: all of the above considerations apply for Λ = 0 if we replace ξ = 3/θ, in accordance with l’Hôpital’s

rule. For Λ < 0 we would have ξ =
√

−3/Λ cot−1(θ/
√
−3Λ), and there is no restriction on the value of θ for Eq. (21)

to be valid and useful.]
Thus if we have an irrotational flow of geodesics, ΛSEC applies, and the local expansion at our position (with

τ = τ0) is θ >
√

3Λ, then we can find the current value of ξ < 0. If we follow the geodesics back to previous epochs,
we must reach ξ = 0, i.e. θ = +∞, at some time τc in the range

τ0 − ξ(τ0) ≤ τc < τ0. (22)

What happens at τc? We haven’t said yet, but there are two possibilities. One is an actual physical singularity – a
point where the curvature of spacetime diverges, and in the context of classical GR one has no idea how to “integrate
back” to before such a singularity. The other is that it is merely an artifact of our suite of geodesics. For example, on
the unit sphere the congruence of geodesics formed by the meridians (lines of constant longitude) all converge at the
poles, with no ill effect. Their divergence ui;j blows up there (exercise: check the divergence ui

;i for this case!) but
this is only because the tangent vector u ceases to be a single-valued function of position when the geodesics cross.

The subject of singularity theorems will be to address which of these situations arises.

IV. THE INITIAL SINGULARITY

Let us now consider a spacetime with the following properties:

• There exists a spacelike surface Σ such that all of the inextendible timelike curves intersect Σ. (The idea is that
Σ is to fill “all of space.”)

• We suppose that the direction of forward time is globally defined and that there are no closed timelike loops
(i.e. no time machines!).

• The expansion or negative trace of the extrinsic curvature satisfies −K ≥ θmin everywhere on Σ, where θmin >√
3Λ (the last inequality is not necessary if Λ < 0). This is really a way of saying that the observers on our

spacelike slice measure an expanding universe by observing the recession velocities of their neighbors, and that
the angle-averaged Hubble rate everywhere exceeds some minimum value. [Recall that −K is the expansion of
the geodesics projected normal to Σ.]

• The SEC holds, with the possible exception of a cosmological constant.

Our goal is to show that there is an initial singularity, and hopefully also establish some results about its nature.
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A. The maximal geodesic

We first take a set of timelike geodesics, projected normal to Σ and extended back into the past in accordance with
the geodesic equation. Without loss of generality we set τ = 0 where they pierce Σ. From the previous discussion, we
know that all of these geodesics must encounter either a physical singularity or an orbit-crossing between τ = 0 and
τ = −ξmin, where ξmin is obtained from θmin in accordance with Eq. (19).

How can we tell which possibility occurs? In general we can’t. However, it turns out that some of the geodesics
projected backward from Σ are special. To see this, consider a point P in the past of Σ, i.e. such that there is at least
one forward-directed timelike trajectory (not necessarily a geodesic) starting from P and reaching Σ. Then there is
a non-empty set N of causal (timelike or null) trajectories from P to Σ. We may define the proper time function
ℓ : N → [0,∞). We will next consider for each such P , the curve of maximal proper time.

[Mathematical aside: To be rigorous, we would need to prove that the curve of maximal proper time exists; this is
not trivial to prove. The idea is two-fold: one must prove that N is compact (time machines would spoil this since
one could take the neighborhoods of curves that pass through the time machine n ∈ Z

+ times), and also that ℓ is
upper-semicontinuous, i.e. that lim supS→C ℓ(S) = ℓ(C) for all C. The upper semicontinuity is required since in the
vicinity of any timelike curve C, or timelike segment thereof, one can make a neighboring curve that zooms around it
at close to the speed of light with a tiny radius. A sequence of such curves may converge to C, but their total proper
time remains less than ℓ(C) by a finite amount.]

Now this maximal-length curve C we have obtained from P to some point Q ∈ Σ must be a geodesic. Moreover its
tangent vector u must be orthogonal to Σ at Q (otherwise we perturb the endpoint and find a longer curve), so C
is in the aforementioned congruence. If its length L exceeds ξ0, then the congruence of geodesics projected into the
past from Σ must have an orbit-crossing somewhere between P and Q, say at A.

B. Variations of the proper time

Our next plan of attack is to contradict the result that C is truly maximal proper time by showing that there is a
variation with negative second derivative.

Let us consider now the problem of taking a geodesic C and finding the length of neighboring curves that start at
P and end on Σ. In particular we consider an extension E(t, s), −L < t < 0, s ∈ R of C, such that E(t, 0) = C(t), and
define the vectors T = ∂tE and S = ∂sE . The trajectory is restricted to E(−L, s) = P and E(0, s) ∈ Σ, and with T

restricted to be normal to Σ.
The variation of the proper time along the trajectory E may be found via

dℓ[E(s)]

ds
=

∫ 0

−L

∂s

√
−T · T dt =

∫ 0

−L

T · (DS/∂t)√
−T · T

dt, (23)

where we recall that DT /∂s = ∇ST = ∇T S = DS/∂t (by commutation). Integration by parts gives

dℓ[E(s)]

ds
= −

∫ 0

−L

S · D

∂t
v dt, (24)

where v = T /
√
−T · T is the unit vector in the direction of T . (The surface terms vanish since S = 0 at P and

T · S = 0 at Σ.)
It turns out that we need one more derivative (we already know the first derivative is zero):

d2ℓ[E(s)]

ds2
= −

∫ 0

−L

[

DS

∂s
· Dv

∂t
+ S · D

∂s

Dv

∂t

]

dt. (25)

At s = 0 (i.e. expanding around a geodesic C), the first term in brackets vanishes. Moreover, we know that (using
that S and T commute):

D

∂s

Dv

∂t
= ∇S∇T v = ∇T∇Sv − R( , v, S, T ). (26)

Furthermore, we find

∇Sv =
∇ST√
−T · T

+
(T · ∇ST )T

(−T · T )3/2
=

∇T S√
−T · T

+ βT = ∇vS + βT , (27)
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where β ∈ R. Now if we apply ∇T to this, evaluate at s = 0 so that T = v = u and ∇uu = 0, and impose the
restriction that S · T = 0 everywhere (i.e. we consider variations orthogonal to the trajectory):

d2ℓ[E(s)]

ds2
= −

∫ 0

−L

S · [∇u∇uS + R( , u, S, u)] dt. (28)

The part in brackets is zero for geodesic deviations S, i.e. if the variation of the path under consideration is a
perturbation onto a neighboring geodesic.

C. Assembling the pieces

We now return to our maximal geodesic. Suppose that an orbit crossing occurs at A, at time t1. This means that
there is a nonzero first-order perturbation of the trajectory from Q to Σ with S = 0 at A; let us call this geodesic
deviation S# (orthogonality to u is trivially verified). Then let us consider the variation of the path:

S(t) =







0 t < t1 − ǫ
X t1 ≤ t ≤ t1 + ǫ
S# t > t1 + ǫ

, (29)

where X = 0 at t1 and X = S# at t1 + ǫ. Now in Eq. (28), the integral has exactly zero contribution from t < t1 − ǫ
or t > t1 + ǫ. If we make ǫ small, then we may connect a geodesic from C(t1 − ǫ) to C(t1 + ǫ), and then the only
contribution to the integral comes from the δ-function spikes in S at t1 ± ǫ:

d2ℓ[E(s)]

ds2
= S · ∆DS

dt

∣

∣

∣

∣

t1−ǫ

+ S · ∆DS

dt

∣

∣

∣

∣

t1+ǫ

. (30)

The first term here vanishes since S = 0, leaving us with the second. But as ǫ becomes small, the neighborhood of A
can be approximated as flat. In a local Lorentz coordinate system then we find

S#(t) =
DS#

dt

∣

∣

∣

∣

t1

(t − t1) + ...; (31)

straightforward computation then shows that DS/dt and S are spacelike vectors in the same direction, hence with
positive dot product. Then the second derivative of the path length is positive so C could not have been maximal.

The upshot is that given any point P in the past of Σ, there maximal geodesic from P to Σ is no longer than ξmin.
In fact this must be true of any causal curve from P to Σ. Therefore any observer’s trajectory, geodesic or not,

followed backward in time from Σ, must have originated from some initial singularity within a time

ξmin.


