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I. OVERVIEW

We are now ready to consider the net loss of energy and angular momentum by a system emitting gravitational
waves. We first work out the governing formulae, and then apply them to the special case of a binary system.

The recommended reading for this lecture is:

• MTW §36.1–36.8.

II. ENERGY AND ANGULAR MOMENTUM LOSS DUE TO GRAVITATIONAL WAVE EMISSION

A. Preliminary considerations

Recall from last time that the effective stress-energy tensor for gravitational waves was

〈tµν〉 =
1

32π
〈hTTij,µhTT

ij
,ν〉. (1)

In Lecture XII, we found that the transverse-traceless gauge gravitational wave emitted from a source was

hTT
ij =

1

R

(

2Q̈ij + nknlQ̈klδij + ninjnknlQ̈kl − 2njnkQ̈ik − 2ninkQ̈jk

)

, (2)

where the quadrupole moment is evaluated at the retarded time t−R, and R and ni are the magnitude and 3-direction
of xi. This can be simplified if we define the spherical projection tensor

Πij = δij − ninj , (3)

which takes a 3-vector and finds the part perpendicular to n. Note that the projection tensor squared is itself, in the
sense of ΠikΠk

j = Πij . We then find

hTT
ij =

2

R

(

ΠikΠjlQ̈kl +
1

2
ΠijnknlQ̈kl

)

=
2

R

(

ΠikΠjlQ̈kl −
1

2
ΠijΠklQ̈kl

)

, (4)

where in the second equality we used the fact that Q is traceless. We also know that due to the retarded evaluation
of Q – i.e. evaluated at t − R – we have

Qij,k = −Q̇ijR,k = −Q̇ijnk, (5)

with errors of order λ/R where λ is the wavelength of the gravitational waves. This is useful for converting radial to
time derivatives.

It will sometimes be profitable below to write Eq. (4) in the matrix form,

hTT =
2

R

[

ΠQΠ−
1

2
ΠTr(ΠQ)

]

. (6)
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B. Energy loss

For the energy loss due to GW emission, we want to compute the outgoing flux of energy through a sphere of some
radius R:

P =
1

32π

∫

〈t0i〉ni d2S

=
1

32π
R2

∫

〈t0i〉ni d2n

= −
1

32π
R2

∫

〈ḣTT
kl hTTkl,ini〉 d2n

=
1

32π
R2

∫

〈ḣTT
kl ḣTTkl〉 d2n

=
1

32π
R2

∫

〈Tr(ḣTT2)〉 d2n

=
1

8π

∫

〈

Tr

[

Π
···

QΠ−
1

2
ΠTr(Π

···

Q)

]2
〉

d2n

=
1

8π

∫
〈

Tr(Π
···

QΠ)2 − Tr(Π2 ···

QΠ)Tr(Π
···

Q) +
1

4
(TrΠ2)[Tr(Π

···

Q)]2
〉

d2n. (7)

Recalling that Π2 = Π and TrΠ = 2, we may simplify this to

P =
1

8π

∫ 〈

Tr(Π
···

QΠ
···

Q) −
1

2
[Tr(

···

QΠ)]2
〉

d2n =
1

8π
〈
···

Qij
···

Qkl〉

∫ (

ΠikΠjl −
1

2
ΠijΠkl

)

d2n. (8)

We now ned to know the integrals over the unit sphere of ΠijΠkl: if we take an angle-average we get

〈ΠijΠkl〉n

= 〈δijδkl − ninjδkl − δijnknl + ninjnknl〉n

= δijδkl −
1

3
δijδkl −

1

3
δijδkl +

1

15
(δijδkl + δilδjk + δikδjl)

=
2

5
δijδkl +

2

15
δl(iδj)k. (9)

Then Eq. (8) becomes

P =
1

2
〈
···

Qij
···

Qkl〉

(

2

5
δikδjl +

2

15
δl(iδk)j −

1

5
δijδkl −

1

15
δl(iδj)k

)

. (10)

This simplifies to

P =
1

5
〈
···

Qij
···

Qij〉. (11)

This is a remarkably simple formula for the energy carried off by gravitational waves. It depends on the third
derivative of the quadrupole moment, and in this sense is similar to the electric dipole radiation formula, 1

3 〈d̈id̈i〉. In
the case of gravitational waves however the leading term is the quadrupole, hence the additional derivative.

C. Angular momentum carried

At a finite distance from the source, the wavefronts are not exactly spherical. Therefore, the effective stress-energy
tensor has nonradial components and there is a net “effective angular momentum density” ǫijkRnjt0k, where the
non-radial part of t0k scales as ∝ R−3. To be specific, the angular momentum carried through a shell is

Hc = ǫcab

∫

xa〈tbl〉nl d
2S
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= R3ǫcab

∫

na〈tbl〉nl d2n

=
1

32π
R3ǫcab

∫

na〈hTTij,bhTT
ij

,l〉nl d
2n

= −
1

32π
R3ǫcab

∫

na〈hTTij,bḣTT
ij〉 d2n (12)

Using the rule that ni,j = Πij/R, the projection tensor has gradient

Πij,a = −
2

R
Πa(inj), (13)

and so we find that

n[a∂b]Πij = −
2

R
n[aΠb](inj) = −

2

R
n[aδb](inj), (14)

or

LcΠij ≡ Rǫc
abna∂bΠij = −2ǫc

abnaδb(inj) = −2ǫca(inj)n
a, (15)

where we have defined the operator Lc ≡ Rǫc
abna∂b. This operator has a single derivative and thus obeys the product

rule. We then find

Hc = −
1

32π
R2

∫

〈Tr[(Lch
TT)ḣTT]〉 d2n. (16)

The operation Lch
TT can be expanded as

Lch
TT =

2

R
Lc

[

ΠQ̈Π−
1

2
ΠTr(ΠQ̈)

]

=
2

R

[

(LcΠ)Q̈Π + ΠQ̈LcΠ−
1

2
(LcΠ)Tr(ΠQ̈) −

1

2
ΠTr(Q̈LcΠ)

]

, (17)

and so

Hc = −
1

16π
R

∫

Tr

〈

(LcΠ)Q̈ΠḣTT + ΠQ̈(LcΠ)ḣTT −
1

2
(LcΠ)Tr(ΠQ̈)ḣTT −

1

2
ΠTr(Q̈LcΠ)ḣTT

〉

d2n. (18)

This result may be simplified as follows:

• Using the fact that ḣTT is already transverse (i.e. orthogonal to n), we have ΠḣTT = ḣTT. Then since hTT is
traceless, the 4th term in Eq. (18) vanishes.

• The first two terms of Eq. (18) are equal using the cyclic property of the trace and the symmetry of the various
factors.

This reduces Eq. (18) to

Hc =
1

8π
R

∫ 〈

−Tr[(LcΠ)Q̈ḣTT] +
1

4
Tr(ΠQ̈)Tr(ḣTTLcΠ)

〉

d2n. (19)

A final simplification is achieved by recalling the formula for LcΠ: from Eq. (15),

Tr(ḣTTLcΠ) = −2ḣTTijǫca(inj)n
a = −2ḣTTijǫcainjn

a = 0 (20)

since hTTijnj = 0. We also find (using this orthogonality relation)

Tr[(LcΠ)Q̈ḣTT] = −2ǫca(inj)n
aQ̈j

kḣTTki

= −ǫcainjn
aQ̈j

kḣTTki

= −
2

R
ǫcainjn

aQ̈j
k

[

Πk
l
···

Ql
mΠmi −

1

2
ΠkiTr(ΠQ̈)

]
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= −
2

R
ǫcainjn

aQ̈j
k
···

Ql
m

(

Πk
lΠ

mi −
1

2
ΠkiΠl

m

)

= −
2

R
ǫcainjn

aQ̈j
k
···

Ql
m

[

(δk
l − nknl)(δ

mi − nmni) −
1

2
(δki − nkni)(δl

m − nln
m)

]

= −
2

R
ǫcainjn

aQ̈j
k
···

Ql
i(δ

k
l − nknl) −

1

R
ǫcainjn

aQ̈ji ···Qlmnlnm

= −
2

R
ǫcainjn

aQ̈j
k
···

Ql
i(δ

k
l − nknl) −

1

R
ǫcainjn

aQ̈ji ···Qlmnlnm. (21)

Comparing to Eq. (19), we see that the emitted angular momentum is

Hc = ǫcai〈Q̈
j
k
···

Ql
i〉

〈

njn
a(δk

l − nknl)
〉

n
+

1

2
ǫcai〈Q̈

ji ···Qlm〉 〈njn
anlnm〉

n
, (22)

where the 〈〉n averages are taken over directions. They simplify to

〈

njn
a(δk

l − nknl)
〉

n
=

4

15
δa
j δk

l −
1

15
(δa

l δk
j + δakδjl) and 〈njn

anlnm〉
n

=
1

15
(δa

j δl
m + δa

lδjm + δa
mδlj). (23)

Here the δk
j term (1st average) and δl

m term (2nd average) will have no effect since Q is traceless. The remaining
terms collect to give

Hc =
4

15
ǫcai〈Q̈

a
l
···

Ql
i〉 −

1

15
ǫcai〈Q̈

a
l
···

Ql
i〉 +

1

30
ǫcai〈Q̈

ji ···Qa
j〉 +

1

30
ǫcai〈Q̈

ji ···Qj
a〉

=
4

15
ǫcai〈Q̈

a
l
···

Ql
i〉 −

2

15
ǫcai〈Q̈

a
l
···

Ql
i〉

=
4

15
ǫcai〈Q̈

a
l
···

Ql
i〉 −

2

15
ǫcai

〈

d

dt
(Q̈a

lQ̈
l
i)

〉

+
2

15
ǫcai〈

···

Qa
lQ̈

l
i〉

=
2

5
ǫcai〈Q̈

a
l
···

Ql
i〉, (24)

where we have used the assumption of no long-term drift of Q̈a
lQ̈

l
i to eliminate the total derivative term.

This is our final result for the total rate of emission of angular momentum:

Hc =
2

5
ǫcai〈Q̈

a
l
···

Qli〉. (25)

III. ENERGY OF A BINARY SYSTEM

In order to proceed to the evolution of a binary system, we must determine its total energy. Put simply: given a
collection of objects {A} of mass mA – for example, stars in a galaxy, or more fundamentally electrons and ions in a
star – how does one determine the total mass? In Newtonian gravity, the answer is

M =
∑

A

mA, (26)

but we will see in general relativity that it is not.
In order to make life simpler, we will make the following assumptions:

• The self-gravity of individual consituents can be neglected. This is a good approximation for e.g. a proton
in the Sun, whose potential well depth mp/rp = Gmp/rpc

2 ∼ 10−43, versus the Sun’s potential well depth of
GM⊙/R⊙c2 = 2 × 10−6. (Of course, if the constituents are really pointlike particles, this description doesn’t
work. In full GR, the only consistent description of a “point” particle is a black hole. In the case of an elementary
particle of mass < mPlanck ∼ 10−5 g, there is no meaningful description of its gravitational field at distances
smaller than the Compton wavelength.)

• The objects are slowly moving and gravity is weak. In particular, we work to order v2 in the velocities and Φ
in the potential. This makes sense because for virialized systems, v2 and Φ are typically of the same order.
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The total mass of the system is simply its energy measured in the center of mass frame. That is, we are interested
in the energy

E =

∫

T eff 00 d3x (27)

and momentum P i =
∫

T eff 0i d3x. Then the mass is

M =
√

E2 − (P i)2. (28)

We note that in the “naive” center-of-mass frame, obtained by setting

∑

A

mAvA = 0, (29)

the momentum becomes at least of order ∼ Mv2, so (P i)2 is of order ∼ M2v4. Therefore it is of high order and we
may take

M = E =

∫

T eff 00 d3x =

∫

T 00 d3x +

∫

t00 d3x. (30)

This integral manifestly has two parts: an integral of the 00 component of the stress-energy tensor over the coordinate
volume, and an integral over the effective gravitational energy.

A. The first integral

To obtain the first integral in Eq. (30), we need the formula for the energy density of a particle. In special relativity,
this was

T 00(t, xi) = p0δ(3)[xi − yi(t)] =
mA

√

1 − v2
A

δ(3)[xi − yi
A(t)]. (31)

In GR this gets modified. The above equation should be true in a local Lorentz frame – any local Lorentz frame –
but the coordinate frame is not of this type. Instead, we recall the metric for a system of slow-moving particles to
first order,

ds2 = −(1 + 2Φ)dt2 + (1 − 2Φ)[(dx1)2 + (dx2)2 + (dx3)2]. (32)

Then at the instantaneous position of a particle, we may define the local Lorentz frame of an observer at rest relative
to the coordinate system,

t̂ = (1 + Φ)(t − torig), x̂i = (1 − Φ)(xi − xi
orig), (33)

where one can readily see that at the origin (torig, x
i
orig) the metric is −dt̂2 + (dx̂i)2. If we choose the spatial origin of

the local Lorentz frame to be at the position of the particle at some time torig, then we have

T 0̂0̂ =
mA

√

1 − v2
A

δ(3)(x̂i). (34)

Converting to the original coordinate system involves two factors of dt/dt̂ = 1 − Φ, and the Jacobian |d3xi/d3x̂j | =
1 + 3Φ. Furthermore, to relevant order we may Taylor-expand the inverse square root, yielding

T 00(t, xi) = mA

[

1 +
1

2
(vA)2 + Φ

]

δ(3)[xi − yi
A(t)]. (35)

Integration is trivial due to the δ-function, and we get that the first integral is

∫

T 00 d3x =
∑

A

mA

[

1 +
1

2
(vA)2 + Φ(yA)

]

. (36)
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At first sight this looks like the Newtonian result. But it is not: writing the gravitational potential in terms of a sum
over the sources, we find

∫

T 00 d3x =
∑

A

mA +
∑

A

1

2
mA(vA)2 −

∑

A,B

mAmB

rAB
: (37)

the gravitational potential energy term is double-counted. (It is also infinite for true point masses, but if we imagine
a continuous distribution of mass it is finite. This problem is no different in linearized GR than it is in Newtonian
physics – the difference is that full nonlinear GR provides a way to make sense of a point mass as a black hole.) The
solution to the double-counting problem is to return to the “gravitational energy” term.

B. The second integral

The effective gravitational energy can be obtained from the previous lecture, using h̄00 = −4Φ, h̄ = 4Φ, and other
components vanishing. From Lecture XI, however, and in the limit of nonrelativistic sources where � → ∇2 (slowly
varying or ∂2

t → 0 approximation):

∫

t00 d3xi = −
1

8π

∫

Φ∇2Φ d3xi = −
1

2

∫

ρΦ d3xi = −
1

2

∑

A

mAΦ(yA) =
1

2

∑

A,B

mAmB

rAB
. (38)

Putting this together with Eq. (37) yields a total mass:

M =
∑

A

mA +
∑

A

1

2
mA(vA)2 −

1

2

∑

A,B

mAmB

rAB
. (39)

This solves the double-counting problem from the first integral: Eq. (39) is (aside from the troublesome self-energy
term in the sum where A = B, which does not exist for continuous mass distributions) the sum of the masses plus
the Newtonian expression for the kinetic and potential energies.

We may thus conclude that the total mass of e.g. a binary star is the sum of the masses plus the standard Newtonian
orbital energy, −mAmB/(2a), where a is the semimajor axis. Thus the negative “gravitational energy” of any

system – a planet, star, or multiple system – itself gravitates. If the system is bound, its total mass is

less than the sum of its parts.

IV. APPLICATION: INSPIRAL OF A BINARY STAR

As a final application, let us consider the evolution of a binary star composed of two components with masses M1

and M2 with separation a on a circular orbit. We will make the velocities involved nonrelativisitic. The system has
a kinetic+potential energy of

Eorb = −
M1M2

2a
(40)

and hence a total mass of

M = M1 + M2 −
M1M2

2a
. (41)

The orbital frequency of the system is

Ω ≡
2π

P
=

(M1 + M2)
1/2

a3/2
. (42)

Our interest is in following the effect of gravitational radiation on the orbit. To do this, we first need to find the
quadrupole moment. For masses separated at angle φ = φ0 + Ωt, this is

Qij =
M1M2

M1 + M2
a2





cos2 φ − 1
3 cosφ sin φ 0

cosφ sin φ sin2 φ − 1
3 0

0 0 − 1
3



 . (43)
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If we use the double-angle identities, this becomes

Qij =
M1M2

M1 + M2
a2





1
2 cos 2φ + 1

6
1
2 sin 2φ 0

1
2 sin 2φ − 1

2 cos 2φ − 1
6 0

0 0 − 1
3



 , (44)

and taking the third derivative gives

···

Qij =
M1M2

M1 + M2
a2Ω3





4 sin 2φ 4 cos 2φ 0
4 cos 2φ −4 sin 2φ 0

0 0 0



 . (45)

The gravitational wave power is then

−〈Ė〉 =
1

5
〈
···

Qij
···

Qij〉 =
1

5

(

M1M2

M1 + M2
a2Ω3

)2

[32] =
32

5

(

M1M2

M1 + M2

)2

a4Ω6. (46)

Using Kepler’s second law to eliminate Ω gives

−〈Ė〉 =
32

5

M2
1 M2

2 (M1 + M2)

a5
. (47)

This is the rate at which the system loses orbital energy. Assuming that the masses of the objects don’t change
(e.g. that there is no transfer of energy from the internal structure of the bodies into the orbit), we may equate this
with the rate of change of orbital energy,

〈Ė〉 = ∂t

(

M1 + M2 −
M1M2

2a

)

=
M1M2

2a2
ȧ, (48)

and hence obtain

ȧ = −
64

5

M1M2(M1 + M2)

a3
. (49)

The − sign indicates that the two bodies spiral together.
Since the rate of inspiral due to gravitational wave emission is proportional to a−3, it follows that as the two bodies

approach each other, they inspiral faster and faster. One may find the approach time by taking

∂t(a
4) = 4a3ȧ = −

256

5
M1M2(M1 + M2), (50)

and hence we see that the inspiral reaches a = 0 in a finite time

tGW =
5a4

256M1M2(M1 + M2)
. (51)

This time is shortest for massive bodies on close orbits, as one might expect.

A. Examples

As a simple example, let’s consider the inspiral times associated with solar-system scales. Recall that, converted
into times, a solar mass is 4.9 µs and the astronomical unit is 500 s. Therefore, we can calculate the inspiral time of
a system:

tGW = 3.3 × 1017 yr
(a/1 AU)4

M1M2(M1 + M2)/M3
⊙

. (52)

For the Earth orbiting the Sun, with M1 = M⊙ and M2 = 3 × 10−6M⊙ at a separation of 1 AU, the inspiral time is
1023 years. Of course by then the Sun will have turned into a white dwarf, Mercury and (maybe) Venus and Earth
will have been consumed, and it is doubtful even that the orbits of the other planets are stable over that timescale.
As a more extreme example one could consider the “hot Jupiters” that have been found around other stars with
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M1 ∼ 10−3M⊙ and a = 0.05 AU. There the inspiral time is 2 × 1015 years. So we can see that even in extreme
situations, gravitational waves have no effect on planetary orbits.

Gravitational waves do however have a more significant effect on binary stars. If we consider a binary with masses
of M1 = M2 = M⊙, and we ask how close the orbits must be to merge in less than the age of the Universe (1010

years), we find

a < 0.016 AU or P < 12 hr. (53)

There are many instances of stellar remnants (white dwarfs and neutron stars) in orbits with periods of this order of
magnitude or shorter (even as short as a few minutes). Such objects will spiral in due to gravitational wave emission.
In the case of binary neutron star mergers, these will be detectable as bursts of gravitational waves by the next
generation of detectors. In the case of systems involving white dwarfs other outcomes are possible depending on the
mass ratio: eventually the lower-mass star will fill its Roche lobe (the region where material can be bound to it rather
than the other star), and either stable mass transfer or the tidal disruption of the lower-mass star will occur.


