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I. OVERVIEW

Having examined weak field gravity and the associated experimental tests, we now turn our attention to the
external field produced by a system (e.g. a star or the solar system) in linearized gravity. This will include both the
gravitational analogues of electric and magnetic multipole moments, as well as gravitational waves.

The discussion in the beginning part of this lecture makes sense only for weak perturbations around Minkowski
spacetime. Later we will generalize the concepts to make sense in asymptotically flat spacetime — i.e. spacetime that
looks like Minkowski far from the system, but may have strongly curved regions inside of it (e.g. a black hole).

The recommended reading for this lecture is:

o MTW §19.1-19.2.

II. GREEN’S FUNCTIONS IN LORENTZ GAUGE

We found that in Lorentz gauge the trace-reversed metric perturbation is given via the relation
Ohy = —167T,. (1)

We would like to formally solve this equation using a Green’s function approach. That is, we wish to construct the
Green’s function G(x®) such that

O0G(z*) = 6@ (z), (2)

and then by the principle of superposition we may write the metric perturbation as an integral over the Green’s
function:

hun(a) = =167 [ Gla™ ~ )T ) 'y, 3)

How are we to find G7 There is unfortunately no unique answer! After all, we could add any function f with
Of = 0 to G and it would still satisfy Eq. (2). However, in most situations there is a physical choice: we want the
retarded Green’s function Gre, which is zero for z° = t < 0. This corresponds to the solution in which there is no
incoming gravitational radiation. The use of the retarded Green’s function is however not a necessity but a particular
solution to Einstein’s equations.

[Note: The notion of a retarded Green’s function is slightly tricky for theories with a conserved source, since in
any physical system there was nonzero T"” somewhere back into the infinite past. However it is clear that if we start
with a stationary mass distribution and no incident gravitational waves, and then allow some complex dynamics to
occur, then a retarded Green’s function will respect causality and not radiate gravitational waves into the past.]

The easiest method to obtain the retarded Green’s function is to expand Eq. (2) in spherical coordinates (¢, 1,8, ¢).
We note that for a function G with spherical symmetry,

1 1
0OG = —8?6’ + V3G = —8t2G + ;83(7“6?) = ;(—8? + 83)(7“(?). 4)
Since the 4-dimensional § function can be written as
1
4 o\
5 (x )—5(t)5(r—€)ma (5)
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with the last factor introduced to give proper normalization for small but positive €, we have

(=02 +0%)(rG) = rOG = 5(t)6(r — e)ﬁ

(6)

This applies at r > 0; at 7 = 0 we have the boundary condition rG = 0. We may extend the range of validity to » < 0
by enforcing the boundary condition with a mirror source and ensuring the odd symmetry of rG:
o(r—e)—9 1 1
(-0 + 82)r0) = 600D Ly = - Lo awyst), ™)

4re 2

This equation can be solved via the definition ¥(¢,r) = ffoo rG dr, so that rG = 0,¥. Then:

1
(=07 +07)¥ = ——d(1)a(r), (8)
27
or switching to a characteristic coordinate system, u =r —t and v =t 4+ r,
0% 1
4 =—— .
e = ——3(u)3(0) )
This has the solution
1 1
U=—0(—udW) =-—0(t—r0(t+r), (10)
4 4
which is obviously retarded. Taking the derivative to get back rG yields the retarded Green’s function
o 1
Gret(x ) = —Eé(t — T)("‘)(t) (11)

The retarded solution for the metric is then
1 re 1
ij@wj):4/;ﬂw@wj—ﬂJ@w, (12)

where r = |Tsp — Ysp|-

Remember that the retarded solution is only one possible solution for the metric for a given matter source. But
the difference between the true solution and the retarded solution can be found by noting that if both are soutions of
Di_zm, = —167T},, for the same source, then

O(huw — Biﬁf) =0. (13)

Therefore, we may write

7 7ret | 7h

by = Iy + ™, (14)
where ho™ is a homogeneous or gravitational wave solution (solution for zero matter source). We will see that
Eq. (12) contains gravitational waves, but they are only outgoing (as one can see from the ¢ — r time argument).
Therefore setting hﬁ‘l’,mo to zero is equivalent to saying that no external gravitational waves are incident on a system.
Usually this is a good approximation!

[Warning: The outgoing gravitational waves in the above formulation are not necessarily in transverse-traceless
gauge.|

III. MULTIPOLE EXPANSION

Far from a source, it is common to do a multipole expansion: essentially a power-series expansion of Eq. (12) in
powers of ys,. This can be done for both relativistic and nonrelativistic sources, but we will focus on nonrelativistic
sources (e.g. binary stars) here. We will also examine only the lowest-order multipoles since these (i) correspond
to conserved quantities and (ii) the next-lowest terms carry the dominant source of gravitational radiation from a
nonrelativistic object.

We will use (¢, z%) for the position of the point at which the metric is measured, y* as the position of a point in the
source, and then define R = |zsp|, n; = 2/ R, and r = |@sp — ysp|- The source is enclosed in a region of characteristic
size ~ L and evolves on a dynamical timescale ~ £gyn.



A. The trace-reversed perturbation

We begin by expanding 1/r as a power series in y:

(2 — i) (@i — ya)] /2

= [wiw; — 2y + yiys]

1 3
= (.’,Eiilfi)_l/2 — §(ZEZI1)_3/2(—2{E1yZ + yzyz) + §($ZI1>_5/2(2I1y1)2 =+ ...

L ngyi | ning(3yiys — ykyrdij)

= —— 15
R R? * 2R3 T (15)
with a fractional error of order (L/R)3, where L is the typical size scale of the source.
We may also Taylor-expand T}, :
1
Tuu(ysput - 7‘) = Tuu(yspu t— R) + niyiTuu,O(yspa t— R) + §ninjyiijuu,OO(yspu t— R), (16)

with a fractional error of order L3/ tgyn =V3or L?/Rtayn = VL/R, where V is the typical velocity scale of the source.

It then follows that the retarded solution for the metric perturbation is

- 1 ngyi o ning(3yay; — Yryrdij)
h#y(wsp,t) = 4/ [E—F—F 2R3

: 1
X {Tw(ysp, t = R) + niyi Ty (Ysp, t — R) + gnmjyiijw,oo(ysp, t— R)] Py (17)

The lowest-order fractional errors are V2, VL/R, and 1/R3.
It is useful to consider the behavior of each metric component at large distances from the source. We first see that

1- 1 3 n; 3 Tn; . 13 3nmj 1 3
Zhoo(:csp,t) = E/pd Ysp — ﬁ/ymd Ysp T+ E/yipd Yso + (yiy; — gykykéij)pd Ysp

1 i
+ g™ /yiyjp dgysp + ...

; (18)

ret

where the |yt on the right-hand side indicates evaluation at the retarded time ¢ — R.

Now the first integral is simply the (conserved) mass M of the system. (Technically this is the energy, but the
difference only arises at the next order in velocity, which we have dropped.) The second integral is the mass dipole
moment,

MY; = / yip &Py, (19)

where Y; is the center of mass. Finally, defining the momentum density F; = T°; and noting that Fj ; = —p the third
integral is

MY = /y”"dgysp =- /yiFj-,a‘ Py = /%‘JFJ' dysp = /F P*ysp = P, (20)

where P; is the total momentum. Under normal circumstances, we will work in the center of mass frame, in which Y;
and P; are zero. Finally, we define the mass quadrupole moment of the system to be

1 1
Qi = /(yzyj - §ykyk5ij)p BPysp = 1;j — §Ikk5ij- (21)

(Here I;; is the moment of inertia tensor.) Then Eq. (17) reduces to

Qijnmj Uz
2
R3 + R

_ M .
hoo(w) = 4E +6 Iij... . (22)

ret

This is simply the standard quadrupolar formula familiar from Newtonian physics, plus a new term that contains I
But note that in fully nonlinear general relativity, the leading correction to the M /R formula is not the quadrupole



term (x R~?) but rather the nonlinearity of the theory (< M?/R? — this is the term that is necessary to obtain the
perihelion precession of Mercury). In some cases, such as the orbit of Mercury around the Sun, the relativistic M?2/R?
term dominates over the quadrupole effect, but for a satellite orbiting the Earth (with its much more flattened shape)
the opposite is true.

We may further write down the linearized formula for hg;, including terms through second order in V:

; (23)

ret

- 4 n; n; .
hoi(x) = E/Fi(ysp)dgysp_4R_]2/iji(ySp) dSySp+4EJ/iji dgySp"’"'

the first integral is P; and hence vanishes. The second integral may be simplified using the rule that the angular
momentum is

Sk = —€ijk /iji(ysp)dgysp (24)
so that
€kim Sk = —€klmEijk /iji(ysp)dSysp = —(010m;j — 6lj6mi)/iji(ysp) Pysp = —2/y[sz] (Ysp) d°Ysp- (25)
Furthermore,
Ii; = /yiyjpdSySp =- /yiijk,k Py = /(yi,kijk + yxyiFr) Py = 2/y(jFi) P yYsp. (26)

Therefore, decomposing the integral in hg; into its symmetric and antisymmetric parts:

_4Rj2 / Fi(?JSp) dg'!lSp = _4R_J2 [/ y[sz‘] (ySp) dB?JSp + /y(jFi) (ySp) dBySP] = 2€iijkR_J2 + 2Iin_J2- (27)
Substituting in this, and its time derivative, gives
_ N .
hol‘(.’l:) = 2€iijkR—]2 =+ 211] R2 261];§Sk 2[1] R . (28)
Using conservation of angular momentum, we drop the Sy, term, leaving
BOi( )— 261J/€Sk +2Il R 2[1] R t' (29)
Finally, in the case of the space-space components we will write only the lowest term,
_ 4 3
hij (ilt) = E Tij d Ysp (30)
ret
This can be simplified by noting that from Eq. (26):
fij = 2/y(]Fz) dsysp = _2/y(jT%)k,k dgysp = 2/T(iyj),k dsysp = 2/E] dgysp- (31)
Then:
hy (@) = 20,y + (32)
Y RV ret

The far-field metric perturbation from a source according to the above equations can be found by reversing the
trace of h;;; we need

- M 2 2 1 (3
h= —A— + =] — nm]IU—I—G%

2R I + ...

(33)

ret



Including this with trace reversal gives

M 1. 1 Qiinn;
hoo = 2— I inil; AL R
00 R+Rkk+RnnJJ+3 R

] . ’]’LJ ’]’LJ .

hoi = 2€ijkskﬁ + 2[1']‘? — QEIU‘ + ... ot and

M 2 . 1 1 Qiimin;
hij = 2—6ij + = 1ij — 5 habij + mnanidudiy — 322 + (34)

I RY "RY R"™WTR J R3 et

This looks at first glance to have several pieces: there is the familiar Newtonian potential; there is a piece associated
with the angular momentum in the time-space part (gravitomagnetism); and there is a set of outward-propagating
waves (gravitational waves!) associated with time variation of the quadrupole moment.

B. The radiation terms

You will note that the gravitational waves (Iza terms) in the far field do not look like the ones we studied: in
particular they have time-space and time-time components and are not orthogonal to n; (the outward direction). At
large distances from the source, the leading-order (1/R) wave terms are

N 1 N
hg;ow = Elkk + }—%nmjlij,
h§W = —2%fw, and
2. 1. 1 .
hoW = Tl - Elkk(sij + Enknljklisij (35)

(all retarded). Fortunately, a gauge transformation can be used to eliminate most of these terms. Recall that under
a change of coordinates ¢, the metric tensor changed by Ah,, = =&, — &, ;.. We first perform a change of the time
coordinate t,

1

& = EI 2an]IU, (36)

leaving the spatial coordinates fixed (§; = 0). Then the time-time component changes by

) 1. 1 .
Ahoo = —250 = —EIkk - Enznjlu (37)
To find the correction Ahg; = —&p,;, we recall that since fij is evaluated at the retarded time, its spatial derivative
contains a time derivative:
Ol = jklai(t — R) = —I'M&R = —jklni. (38)
Thus:
1 .
Ah()i = ﬁnijkk + 2annjnkfjk (39)
After applying this transformation, the outgoing wave is
AV = 0,
hEW = 1nI;g;g+ —nininglia — nJI and
01 2R T 2R (3R] J R VR
2 . 1. 1 -
h?jw = Elij — Elkkéij + }—%nknllméi]‘ (40)

(again retarded).
Finally, we may introduce a gauge transformation in the spatial coordinates to eliminate hg‘iw. We want Ahg; = —§;
to cancel h§iW, so we choose &; to be the time-integral of h§W:
1 . n;

51‘ = ﬁnilkk =+ 2RTL TLJTLkljk EJIU (41)



Now we find that the change to the purely spatial metric is

Ahij = =&ij =&
= n;& +ng
- o+ Fu— Znmid — Zning (42)
= ann] kk ann]nknl kl Rn]nk ik annk jk-
The overall amplitude of the outgoing gravitational wave is then

hSV = 0,

Y = 0, and

h%w = I (2Iij — Iikdij + npnyle 05 + ning Iy + ningnengly — 2nngly, — 2nmkljk) (43)

(all retarded, as usual). This is the usual form for the amplitude of emitted gravitational waves.
It is straightforward to check that Eq. (43) corresponds to a transverse-traceless tensor. To see that it is transverse,
note that

h%—wni = E (2Iijnl- — Ikknj + ningng Ly + njfkk + njnknlsz - 2njnknilik - 2nkIjk) =0. (44)
To see that it is traceless, take

hgw = T (2Iii — 31k + 3nini iy + Ik + ngnyliy — 2ning L — 2”1‘”1911'19) =0. (45)

The equation for hgw may look messy (it has 7 terms) but in fact the first one is the key: the others are simply
projections that guarantee the transverse-traceless nature.

C. The non-radiation terms

In addition to gravitational radiation, the metric can contain the non-radiation terms, the leading ones of which
are associated with the mass M and angular momentum () §:

M , M
ds? = — (1 — 2?) dt* + 4eijknj%dt dz' + (1 + QE) [(dz)? + (dz?)* + (dx®)?] + ... (46)

The “mass” terms M we have already discussed extensively: indeed, the mass M of a system is measurable using
ordinary Newtonian dynamics, e.g. using Kepler’s 3rd law.

The “angular momentum” terms (3§ are a bit trickier: they lead to gravitomagnetism. A contribution hg; to the
time-space part of the metric in linear theory leads to a contribution to the Christoffel symbol:

X 1 1
Al"g; = —§h0j,z' + §h0i,j = hoji,j) (47)
so that there is an additional contribution to the second derivative of a coordinate:
a2z fdt\? g
A d7'2 = —2h0[i7j].’lfj (d_T) ~ —2h0[ZJ].’IIJ (48)

Therefore if we define the 3-vector (3) A (the gravitomagnetic 3-vector potential) with components hg;, we see that an
object has an apparent acceleration given by

(B)Ggravitomagnetic = (3)1) X (v X (B)A) (49)

Thus the hg; term, generated by the total angular momentum of an object, is exactly analogous in its low-velocity
limit to the magnetic field interaction in electrodynamics. There is a difference though — it is common in both nature
and in the laboratory for magnetic forces to dominate over electric forces. This is because charges of both signs exist;
a current-carrying wire has equal numbers of protons and electrons, but there is a drift of the electrons relative to
the protons (or nuclei). Thus the wire’s electric field may be small and the magnetic forces become dominant. For
gravitation, no such circumstance occurs: pv in most systems is small compared with p.



