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I. OVERVIEW

In this lecture, we will consider the spatial distribution of energy and momentum and their transport and conserva-
tion laws. The key new object that we will construct is the stress-energy tensor Tµν – the right-hand side of Einstein’s
equation.

The recommended reading for this lecture is:

• MTW §5.1–5.7.

II. THE STRESS-ENERGY TENSOR

Consider a system containing matter, radiation, etc. observed in a particular Lorentz frame {e0, e1, e2, e3}. We
will study here the features of conservation of energy-momentum (a vector quantity). As a warmup, first it is worth
recalling the conservation of (scalar) charge.

A. Charge

We learned in the lecture on E&M that one could construct a 4-vector Jα consisting of the charge density (ρ = J0)
and the current density (J i). For a point particle, this is

Jα =

∫

euαδ(4)[xµ − yµ(τ)] dτ (1)

and hence is Lorentz invariant; the “3+1” expression is

J0(t, xi) = eδ(3)[xi − yi(t)] and Jk(t, xi) = e (3)vkδ(3)[xi − yi(t)]. (2)

This was conserved in the local sense that

Jα
,α = ρ̇ + J i

,i = 0. (3)

Alternatively, if one tries to define a total charge

Q(t) =

∫

R3

ρ(t, xi) d3xi (4)

then its time derivative is

Q̇(t) =

∫

R3

ρ̇(t, xi) d3xi = −

∫

R3

Jk
,k(t, xi) d3xi = 0, (5)

where the last statement is Gauss’s divergence theorem (with boundary at infinity). So the total charge is globally
conserved.
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B. Energy-momentum

We can repeat the same exercise for conservation of energy and momentum. Given a particle we may construct its
4-current density of 4-momentum, T βα:

T βα =

∫

pβuαδ(4)[xµ − yµ(τ)] dτ. (6)

It can be broken down into densities and fluxes of 4-momentum:

T β0(t, xi) = pβδ(3)[xi − yi(t)] and T βk(t, xi) = pβ (3)vkδ(3)[xi − yi(t)]. (7)

This tensor is called the stress-energy tensor. In “3+1” terminology, and in full generality (i.e. if we consider energy
and momentum carried by fields as well as particles), the stress-energy tensor contains:

• The energy density: T 00.

• The energy flux in the i-direction: T 0i.

• The 3-momentum density: T i0 (this is the density of momentum component i).

• The 3-momentum flux (or “stress”): T ij (this is the flux in the j direction of momentum component i).

The stress-energy tensor has 16 components, but we will see later that it is symmetric and only 10 are physical.
The usual statements about charge are equally valid for 4-momentum. It is conserved in the local sense that

T βα
,α = Ṫ β0 + T βk

,k = 0. (8)

Alternatively, if one tries to define a total 4-momentum

P β(t) =

∫

R3

T β0(t, xi) d3xi (9)

then its time derivative is

Ṗ β(t) =

∫

R3

Ṫ β0(t, xi) d3xi = −

∫

R3

T βk
,k(t, xi) d3xi = 0, (10)

where again the last statement is Gauss’s divergence theorem (with boundary at infinity). So the total 4-momentum
is globally conserved.

III. EXAMPLES OF STRESS-ENERGY TENSORS

A. Example I: Perfect fluid

A perfect fluid in its rest frame has an energy density ρ and a pressure p. By isotropy, it carries zero energy flux
and has zero momentum density. To compute the 3-momentum flux, we note that the flux of 1-momentum in the
1-direction is the momentum carried per unit time per unit area, i.e. the force per unit area p. This is the same as
the flux of 2-momentum in the 2-direction, etc., so

T βα =







ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p






. (11)

Equation (11) can be generalized to any frame by writing the right-hand side as a tensor. If the fluid has 4-velocity
u, then we find

T βα = ρuβuα + p(gβα + uβuα). (12)

This is in component notation; in terms of tensor operations it is

T = ρu ⊗ u + p(g + u ⊗ u) = (ρ + p)u ⊗ u + pg. (13)
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B. Example II: Gas of noninteracting particles

Consider a gas composed of weakly or noninteracting identical particles each of mass m that do not form a perfect
fluid (e.g. a real gas of atoms whose separation is many times the mean free path). They have a phase space density

f(xi, pi; t) which is the number of particles per unit volume in 3-position space per unit volume in 3-momentum space.
The density of energy-momentum is

T β0 =

∫

f(xi, pj ; t) pβ d3pj (14)

(valid in a Lorentz frame). The flux contains an additional factor of 3-velocity (3)vk = uk/u0 = pk/p0,

T βk =

∫

f(xi, pj ; t) pβ pk

p0
d3pj . (15)

These equations can be combined into

T βα =

∫

f(xi, pj ; t) pβpα d3pj

p0
. (16)

A useful fact (and good homework exercise!) is to prove that f(xi, pj; t) and d3pj/p0 are individually Lorentz invariant.
(In particle physics the latter sometimes goes by the name of “Lorentz invariant phase space.”)

IV. SYMMETRY OF THE STRESS-ENERGY TENSOR

The stress-energy tensor must be symmetric. The standard way to prove this is to consider an infinitesimal cube of
material of side length ℓ. What happens to it if the stress tensor is asymmetric, T 12 6= T 21? Then let’s consider the
3-component of the torque on the cube. This comes from four faces, pointed in the +1, +2, −1, and −2 directions:

τ3 = [τ3]+1 + [τ3]+2 + [τ3]−1 + [τ3]−2

= (−T 21ℓ2)(ℓ/2) − (−T 12ℓ2)(ℓ/2) + (T 21)(−ℓ/2)− (T 12)(−ℓ/2)

= (T 12 − T 21)ℓ3. (17)

However the moment of inertia of the cube is 1
6ρℓ5. Therefore in the limit that ℓ → 0+, the cube undergoes an infinite

angular acceleration unless T 21 = T 12. Application of this argument in all reference frames guarantees a symmetric
stress-energy tensor.

V. ENERGY OF THE ELECTROMAGNETIC FIELD

Not all energy-momentum is carried by particles. Some of it is associated with fields, and chief among these is the
electromagnetic field Fαβ .

A. Construction of the stress-energy tensor

We may build the stress-energy tensor by considering first the energy density of the field. In undergraduate physics
you learned that this was

ρ =
1

8π
(E2 + B

2). (18)

The challenge is to turn this into a full stress-energy tensor. We work in the frame of an observer with 4-velocity u.
The electric field seen by the observer is

Eβ = Fβαuα (19)

(this has zero time component). So it follows that

E
2 = FβαuαF β

γuγ . (20)
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Furthermore, inspection of components of the field tensor shows that

FδβF δβ = −2(E2 − B
2) (21)

and so

B
2 = FβαuαF β

γuγ +
1

2
FδβF δβ . (22)

Putting these together, and inserting a factor of −gαγuαuγ = 1, gives the energy density

ρ =
1

4π

(

FβαF β
γ −

1

4
FδβF δβgαγ

)

uαuγ . (23)

Since in general ρ = Tαγuαuγ , and T is symmetric, the above relation can hold for all rest frames only if

Tαγ =
1

4π

(

FβαF β
γ −

1

4
FδβF δβgαγ

)

. (24)

B. Implications

Equation (24), derived solely from the electromagnetic energy density, immediately implies several familiar facts
from undergraduate physics.

Let us first consider the energy flux (Poynting flux) in say the 1-direction. This is the T 01 component of the
stress-energy tensor, or

T 01 =
1

4π
Fβ

0F β1 =
1

4π
(F2

0F 21 + F3
0F 31) =

1

4π
(E2B3 − E3B2). (25)

If the energy flux forms a 3-vector Si, then this is the 1-component of the equation

S =
1

4π
E × B. (26)

Next let’s consider the stress tensor. We’ll consider the T 11 component, i.e. the flux of 1-momentum carried in the
1-direction. This is

T 11 =
1

4π

(

Fβ
1F β1 −

1

4
FδβF δβ

)

=
1

4π

[

−(E1)2 + (B2)2 + (B3)2 +
1

2
(E2 − B

2)

]

=
1

8π

[

(E2)2 + (E3)2 + (B2)2 + (B3)2 − (E1)2 − (B1)2
]

. (27)

So one can see that electric or magnetic fields exhibit positive stress (i.e. they “push”) perpendicular to field lines,
and exhibit negative stress (i.e. they “pull”) parallel to field lines.


