
Ph 236 – Homework 3

Due: Wednesday, October 24, 2012

1. Relativistic shocks [18 points]
Relativistic shocks are believed to occur in many high-energy astrophysical phenomena (e.g. gamma ray
bursts). Here you will work through the properties of a simplified model.

We consider a plane-parallel shock and work in its rest frame. The shock is located at x = 0 at all times,
and is translation invariant in y and z. An ideal fluid with rest-frame baryon number density n, energy
density ρ, pressure p, and 3-velocity β enters the shock from the x < 0 side. It emerges on the x > 0 side
with baryon number density n′, energy density ρ′, etc.

You will want to define γ = (1 − β2)−1/2 and γ′ = (1 − β′2)−1/2. Also you will use the rest mass per
baryon of cold matter, m0 = 1.67 × 10−24 g.

(a) Using the conservation of baryon number and energy-momentum, prove the following relations among
the flow parameters:

nβγ = n′β′γ′

(ρ + p)βγ2 = (ρ′ + p′)β′γ′2

(ρβ2 + p)γ2 = (ρ′β′2 + p′)γ′2. (1)

(b) A common situation is that the incoming gas is cold (kT ≪ ρβ2, so that initial thermal motions can
be neglected) and the outgoing shocked gas is a radiation-dominated plasma – i.e. its stress-energy tensor
is dominated by the sum of the baryonic rest mass and the radiation generated in the shock. Express ρ, p,
and ρ′ in terms of n, n′, p′, and m0.

(c) Using your answer from part (b) and the first two equations from part (a), eliminate ρ, p, and ρ′, and
n′, and express p′ in terms of β′.

(d) Using the remaining equation from part (a), show that the post-shock velocity is related to the
pre-shock velocity by the equation:

4β = −

√

1 − β′2

γβ′
+ 3β′ +

1

β′
. (2)

This equation always has two solutions, only one of which can represent a shock. Explain why.
(e) Plot the relation from part (d) using your favorite method.1 Then find the behavior of β′ in the two

limiting cases:

• The non-relativistic shock, β → 0. (I’m looking for β′ to first order in β.) This describes a supernova
shock as it propagates through the envelope of the dying star.

• The ultra-relativistic shock, β → 1.

(f) Now transform to the rest frame of the upstream (unshocked) gas. In the ultrarelativistic case, what
is the relation between the Lorentz factor of the shock and that of the postshock gas?

2. Electrodynamics based on the action. [18 points]
This problem works through the canonical formulation of electrodynamics. We begin with the action (in
CGS units):

S = SEM + Sparticle + Sint. (3)

Here the purely electromagnetic part of the action is

SEM = −
1

16π

∫

FµνFµν d4x, (4)

1Anything is fine here – gnuplot, Mathematica, slide rule + graph paper ...

1



where the integral is over all of spacetime; the particle part of the action for a particle of mass m is

Sparticle = −m

∫

dτ, (5)

i.e. this is the mass of the particle times the length of its world line; and the interaction term is

Sint =

∫

AµJµ d4x. (6)

As usual, the action is to be minimized with respect to Aµ(xα) and the trajectory of the particle, subject to
the initial and final field configurations, and F ≡ dA.

(a) Prove that under gauge transformations, Aµ → Aµ + χ,µ (where χ is an arbitrary scalar field), the
change in the action ∆S can be written as a boundary integral only if Jµ

,µ = 0. Thus the conservation of
charge is necessary in order for the action to be gauge invariant.

(b) Now suppose the particle has charge e. Show that the particle and the interaction terms can be
written as

Sparticle + Sint =

∫

(

−m

√

−gµν
dxµ

dλ

dxν

dλ
+ eAµ

dxµ

dλ

)

dλ, (7)

where λ is a parameter. By varying the functions xµ(λ), show that

0 = −m
duµ

dλ
+ eFµν

dxν

dλ
, (8)

and hence derive the Lorentz force law.
(c) Show that varying the electromagnetic 4-potential Aµ(xα) leads to the Gauss-Ampère law Fαβ

,β =
4πJα.
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