
Ph 236 – Final Exam, Fall Term

Due: Wednesday, December 12, 2012

1. Falling into a black hole. [12 points]
Consider a Schwarzschild (non-rotating) black hole of mass M , which has metric:

ds2 = −

(

1 −
2M

r

)

dt2 +
dr2

1 − 2M/r
+ r2(dθ2 + sin2 θ dφ2); (1)

we will consider the region r > 2M . This system is manifestly spherically symmetric, time-independent, and
asymptotically flat. The metric components gµν diverge as r → 2M (the event horizon). It is not obvious
from the form of the metric whether this reflects a true singularity or merely a singularity of the coordinate
system (next term we will learn it is a coordinate singularity).

(a) Consider the trajectory of a photon propagating radially outward (pr > 0, pθ = pφ = 0). Use the null
condition to find dt/dr as a function of r. Show that the amount of coordinate time required for the photon
to travel from r1 to r2 is

∆t = r2 − r1 + 2M ln
r2 − 2M

r1 − 2M
. (2)

Show that this becomes infinite as r1 → 2M – one manifestation of the black hole’s event horizon.
(b) Now let us consider a daring observer O who decides to free-fall radially into the black hole (ur < 0,

uθ = uφ = 0). Explain why ut is conserved on the observer’s trajectory. Assign it the value ut = −Ẽ; in one
sentence, what is the physical interpretation of Ẽ?

(c) Find dt/dr and dτ/dr as functions of r and the constant E. Show that O reaches the event horizon
in finite proper time τ , but in infinite coordinate time t. [You don’t need to actually do the integral for τ ,
just prove it is finite.]

2. Energy in gravitational waves. [18 points]
This problem works through an alternate derivation of the fact that gravitational waves have an apparent
energy density. The idea is that we will use the Raychaudhuri equation to show that – if one works beyond
linear GR perturbation theory – neighboring particles are pulled together if a gravitational wave passes over
them.

The setup for this problem will begin in a small region of flat spacetime, far removed from any sources,
where we will build the usual set of Minkowski coordinates, and a congruence of geodesics with uα =
(1, 0, 0, 0), and consider in particular an observer who follows the geodesic that passes through the origin.
We will then let a distant source (or sources) emit some gravitational waves that pass over the observer. The
problem will be to determine what happens to the geodesics near the observer as a result. Assume that in
some neighborhood of the observer the stress-energy tensor is zero.

(a) Show that for the above geodesics, the expansion θ = uα
;α exactly satisfies

dθ

dτ
= −

1

3
θ2 − σαβσαβ , (3)

where σαβ is the traceless-symmetric velocity gradient (as defined in Lecture XIV), and that the initial
condition is θ(τi) = 0 (where τi is chosen to be before the gravitational waves arrive).

In what follows we will be interested in solving for θ to second order. To do so, we will need to solve for σαβ

to first order. We will do so in the transverse-traceless gauge,

ds2 = −dt2 +
(

δij + hTT
ij

)

dxi dxj + O(h2). (4)

(b) Show that the curves xi = constant, t = τ are geodesics. Thus, to first order in h, this is our
congruence of geodesics.
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(c) Find the shear to linear order in h.
(d) Using your result from parts (a) and (c), show that to linear order in h the expansion θ remains zero,

and that to second order we have

θ = −
1

4

∫ τ

τi

ḣTT
ij ḣTT ij dt + O(h3). (5)

Thus after the gravitational wave(s) pass by, the geodesics are converging – i.e. test particles initially at rest
relative to the observer now have a net inward velocity with the apparent “−div v” given by the answer to
part (d).

(e) Show that the velocity gradient in part (d) is equivalent to that one would find if instead of gravita-
tional waves there was matter present with

ρeff + 3peff =
1

16π
〈ḣTT

ij ḣTT ij〉, (6)

where the average is taken over time. This is exactly what one would calculate using the “effective stress-
energy of gravitational waves” described in class.
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