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I. INTRODUCTION

Our final step in the analysis is to consider the generation of perturbations in inflation.
The recommended reading if you like this subject is Liddle & Lyth, Cosmological inflation and large scale structure,

Chapter 7.

II. SETUP NOTES

As a reminder, in inflation all patches start in causal contact and then exit the horizon. This is a consequence of
the nature of the conformal time:

∫

dt/a is finite in the future but (maybe) not the past. We ordinarily take the
range −∞ < η < 0.

We will take ~ = 1 in these notes.

III. THE HAMILTONIAN

Our first step is to build the Hamiltonian for perturbations in the scalar field. This is relatively straightforward:
the Lagrangian is

Lφ =

∫
[

−1

2
gµνφ,µφ,ν − V (φ)

]

α γ1/2 d3x, (1)

or in terms of our perturbation variables, setting φ(η, xk) = φ̄(η) + δφ(η, xk):

Lφ = a4

∫
[

1

2
a−2(1 +A)−2( ˙̄φ+ δφ̇)2 − a−2 ˙̄φBiδφ,i −

1

2
a−2δφ,iδφ,i − V (φ̄) − V ′(φ̄)δφ − 1

2
V ′′(φ̄)δφ2

]

(1 +A)

×
[

1 − 1

2
hii +

1

8
(hiihjj − 2hijhij)

]

d3x. (2)

There is a conjugate momentum ̟(η, xk) = δLφ/δ(δφ̇(η, xk)):

̟ = a2(1 +A)−1( ˙̄φ+ δφ̇)

[

1 − 1

2
hii +

1

8
(hiihjj − 2hijhij)

]

; (3)

then the Hamiltonian for the scalar field is

Hφ = a4

∫
[

1

2
a−6̟2 + a−2 ˙̄φBiδφ,i +

1

2
a−2δφ,iδφ,i + V (φ̄) + V ′(φ̄)δφ+

1

2
V ′′(φ̄)δφ2

]

(1 +A)

×
[

1 − 1

2
hii +

1

8
(hiihjj − 2hijhij)

]

d3x− ˙̄φ

∫

̟d3x. (4)

Now ̟ has a mean value ¯̟ = a2 ˙̄φ. We may take this out by the canonical transformation to δ̟ = ̟− ¯̟ , and with
a corresponding change to the Hamiltonian that involves only the zero mode. Then

Hφ = a4

∫
[

1

2
a−2 ˙̄φ

2
+ a−4 ˙̄φδ̟ +

1

2
a−6δ̟2 − a−2 ˙̄φBiδφ,i +

1

2
δφ,iδφ,i − V (φ̄) − V ′(φ̄)δφ− 1

2
V ′′(φ̄)δφ2

]

(1 +A)
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×
[

1 − 1

2
hii +

1

8
(hiihjj − 2hijhij)

]

d3x− ˙̄φ

∫

δ̟ d3x + zero mode. (5)

Equation (5) is exact, at least in terms of linear perturbation theory. In slow roll inflation, however, the terms

involving the derivative of the potential – and consequently those involving ˙̄φ – are small. Then one may write

Hφ ≈ Hslow
φ =

∫
[

δ̟2

2a2
+

1

2
a4δφ,iδφ,i

]

d3x

−V (φ̄)a4

∫

(1 +A)

[

1 − 1

2
hii +

1

8
(hiihjj − 2hijhij)

]

d3x. (6)

In Fourier space, we have the canonically conjugate pair

δφ(x) =

∫

δφ(k)eikx d3k

(2π)3
↔ δ̟(x) =

∫

δ̟(k)e−ikx d3k. (7)

Then:

Hslow
φ =

∫
[

(2π)3

2a2
δ̟(k)δ̟(−k) +

a4k2

2(2π)3
δφ(k)δφ(−k)

]

d3k

−V (φ̄)a4

∫

(1 +A)

[

1 − 1

2
hii +

1

8
(hiihjj − 2hijhij)

]

d3x. (8)

Equation (8) will be the basis for our consideration of the perturbations generated during inflation. We consider
both the scalar (next lecture!) and tensor sector. Note that in scalar field inflation there are no vector perturbations
at all, since we have only one canonically conjugate pair (hH, κH) for each polarization (horizontal or vertical), the
constraint specifies κH in terms of hH, and a gauge transformation can set hH = 0.

IV. TENSOR PERTURBATIONS

We consider the tensor perturbations first, as these are the simplest to understand. The Hamiltonian for the tensors
is equivalent to that in the ΛCDM sector, except that V (φ̄) replaces Λ.

It will be seen that the development of tensor perturbations depends only on the dynamics near horizon exit. We
therefore further replace V (φ̄) with the value of the potential at the reference field φe, corresponding to the field value
at horizon exit – i.e. when H = k. (Remember that during inflation, H ≈ −1/η is exponentially increasing with
time.)

The Hamiltonian can be obtained from Lecture XXXVI, Eq. (44), and with the replacements

H = −1

η
and

5a2H2 − a4Λ

16π
→ 5a2H2 − a4(3a−2H2)

16π
=
a2H2

8π
=

a2

8πη2
. (9)

Then:

Htensor =

∫

[ a2k2

32π(2π)3
h+(k)h+(−k) +

32π(2π)3

a2
κ+(k)κ+(−k) +

8

η
h+(k)κ+(k)

+
a2

8π(2π)3η2
h+(k)h+(−k)

]

d3k + [+ ↔ ×]. (10)

A. Classical analysis

We now consider the classical evolution under the tensor Hamiltonian.
There is a Poisson bracket:

{h+(k), κ+(k′)}P =
1

2
δ(3)(k − k′). (11)

There is also a classical solution: Lecture XXXVI gives the ODE (with H = −1/η)

ḧ+(k) − 2η−1ḣ+(k) + k2h+(k) = 0. (12)
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The solution is standard: we note that if h+(k) = η2u, then

η2ü+ 2ηu̇+ 2u+ (k2η2 − 2)u = 0, (13)

which has the two linearly independent solutions u = j1(kη) and y1(kη) (spherical Bessel functions). Thus

h+(k, η) = Z1(k)(sin kη − kη cos kη) + Z2(k)(− cos kη − kη sin kη). (14)

Clearly the solution oscillates at early times with amplitudes determined by Z1(k) and Z2(k), and asymptotes at late
times to −Z2(k) (the Z1 solution is decaying).

We also see in this case that the conjugate momentum satisfies

κ+(k, η) =
(2π)3a2

32π
[ḣ+(−k) + 4Hh+(−k)], (15)

and substituting in the solution from Eq. (14), combined with H = −1/η and

a2 =
H2

H2
=

1

H2
I η

2
(16)

(where HI is the Hubble rate during inflation) gives

κ+(k, η) =
1

32π(2π)3H2
I η

3

[

Z1(−k)[(k2η2 − 4) sinkη + 4kη cos kη] + Z2(−k)[−(k2η2 − 4) cos kη + 4kη sin kη]
]

. (17)

B. Quantum analysis

Up to now, everything has been classical. In classical physics, it would have been perfectly fine to say that there
were no initial gravitational waves: then Z1(k) = Z2(k) = 0 ∀k. Quantum mechanically, however, there is a problem:
one cannot set both a coordinate h+(k) and its conjugate momentum κ+(k) to zero.

To see how to proceed in this situation, we re-interpret Z1(k) and Z2(k) as quantum operators, and take h+(k, η)
and κ+(k, η) to be operators in the Heisenberg picture of quantum mechanics (operators evolve, wave functions don’t).
Then there should be some commutation relation

[Za(k), Zb(k
′)] = Sab(k)δ

(3)(k + k′) (18)

(the δ-function is by translational invariance) and a, b = 1, 2. Symmetry considerations force Sab to depend only on
the magnitude of k and to be antisymmetric – thus S11(k) = S22(k) = 0 and S12(k) = −S21(k). Inspection of Eq. (14)
and Eq. (17) then shows that

[h+(k, η), κ+(k′, η)] =
1

32π(2π)3H2
I η

3
S12(k) k

3η3δ(3)(k − k′) =
k3

32π(2π)3H2
I

S12(k)δ
(3)(k − k′). (19)

Considering the Poisson bracket, Eq. (11), we want this to equal 1
2 iδ

(3)(k − k′). Therefore, we must have

S12(k) = i
16π(2π)3H2

I

k3
. (20)

That is, the commutation relation for the amplitudes is

[Za(k), Zb(k
′)] = iǫab

16π(2π)3H2
I

k3
δ(3)(k + k′), (21)

where ǫab is the antisymmetric symbol.
The classical real nature of the gravitational wave amplitude means that the quantum operator is Hermitian; in

Fourier space this means

Z†
a(k) = Za(−k). (22)

We want to know what is the expectation value of the final gravitational wave amplitude. As η → 0 (end of
inflation), we have

h+(k, 0) = −Z2(k) (23)



4

and so

〈h+(k, 0)h+(k′, 0)〉 = 〈Z2(k)Z2(k
′)〉. (24)

But at this point we have a problem: we can’t actually evaluate Eq. (24), because despite having a complete description
of the operator, we don’t have a description of the quantum state of the Universe! You might imagine that the Universe
started out with “no gravitational waves,” which seems like a reasonable first guess (and must be true if primordial
gravitational waves are only those generated by inflation) – but what does that even mean?

C. The vacuum

A clue is that the evolution of each Fourier mode of the gravitational wave distribution is a quantum linear oscillator
with time-dependent Hamiltonian. Normally in quantum mechanics of a particle, with a Hamiltonian

H =
p2

2m
+

1

2
mω2x2, (25)

we write the solutions as x = C1f1(t) + C2f2(t), where f1 and f2 are functions of time:

x = C1
cosωt

(mω)1/2
+ C2

sinωt

(mω)1/2
. (26)

Then there is a corresponding function for the momentum:

p = −C1(mω)1/2 sinωt+ C2(mω)1/2 cosωt. (27)

Here we have normalized these solutions so that [C1, C2] = i. Reality conditions imply that C1 and C2 are Hermitian.
Then we take the step of choosing an annihilation operator b and a creation operator b† (the Hermitian conjugate) via

b =
C1 + iC2√

2
, and b† =

C1 − iC2√
2

. (28)

These obey the relation [b, b†] = 1. We have

x =
1

(2mω)1/2
(be−iωt + b†eiωt). (29)

The Hamiltonian can be written as

H = ω

(

b†b+
1

2

)

. (30)

The ground state of the quantum harmonic oscillator is thus the vacuum |vac〉 defined by b|vac〉 = 0. This really
defines a state up to an irrelevant phase: this is because with the transition p→ −i∂x, the annihilation operator is a
first-order differential operator and specifying a single amplitude ψ(x = 0) is then sufficient to solve the entire wave
function. It can then be appropriately normalized.

How do we generalize this to the case of a quadratic, time-dependent Hamiltonian? Clearly, we have to make
some choice of annihilation and creation operators – essentially, we must separate the solution for x into “positive
frequency” and “negative frequency” modes – without the benefit of the clean complex-exponential time dependences
(Eq. 29) that we get for constant Hamiltonian (and thus uniquely defined energy eigenstates for all time). The only
non-negotiable aspect of this is the commutation relation [b, b†] = 1: there are thus many possible “vacuum” states
corresponding to different choices of the operator b.

[Aside: This ambiguity does not exist in special relativity because a mode that is positive frequency complex
exponential for one inertial observer is so for all. Therefore, the “vacuum” exists in special relativistic quantum field
theory as a Lorentz-invariant quantum state. But this approach is not meaningful in curved spacetime.]

There is no general solution to this problem, but fortunately there is a special choice of vacuum – the Bunch-Davies

vacuum – in inflating spacetimes. An investigation of Eq. (14) shows that at −kη ≫ 1,

h+(k, η) ∼ −1

2
kη[Z1(k) + iZ2(k)]e

−ikη − 1

2
kη[Z1(k) − iZ2(k)]e

ikη . (31)
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Thus we expect that Z1(k) + iZ2(k) will play the role of an annihilation operator at early times, when the Fourier
mode is inside the horizon and the gravitational wave propagates through many wavelengths before the background
spacetime changes. In this sense, the system asymptotically looks like a gravitational wave propagating in Minkowski
space at early times, and we treat the conventional flat-spacetime ground state as the vacuum. The specific annihilation
operator that we need for proper normalization is

b(k) =

√

k3

32π(2π)3H2
I

[Z1(k) + iZ2(k)], (32)

with

b†(k) =

√

k3

32π(2π)3H2
I

[Z1(−k) − iZ2(−k)]. (33)

Then [b(k), b†(k′)] = δ(3)(k − k′). The Bunch-Davies vacuum is the state defined by the annihilation operator giving
zero:

b(k)|vac〉 = 0. (34)

D. Primordial gravitational wave amplitude

We are finally ready to evaluate the primordial gravitational wave amplitude in the Bunch-Davies vacuum. This
begins by using Eq. (32) to get

Z2(k) =

√

8π(2π)3H2
I

k3
[−ib(k) + ib†(−k)]. (35)

Then from Eq. (24):

〈h+(k, 0)h+(k′, 0)〉 = 〈Z2(k)Z2(k
′)〉 =

8πH2
I

(2π)3k3/2k′3/2
〈vac|[−ib(k) + ib†(−k)][−ib(k′) + ib†(−k′)]|vac〉. (36)

By operating on the vacuum state with the annihilation operator, and back-acting on the bra state with the creation
operator, we find that of the four terms in the expectation value all but one vanishes:

〈h+(k, 0)h+(k′, 0)〉 =
8π(2π)3H2

I

k3/2k′3/2
〈vac|b(k)b†(−k′)|vac〉. (37)

Next we use the commutation relation:

b(k)b†(−k′) = b†(−k′)b(k) + [b(k), b†(−k′)] = b†(−k′)b(k) + δ(3)(k + k′). (38)

Using the annihilation property on the vacuum, we are left with

〈h+(k, 0)h+(k′, 0)〉 =
8πH2

I

(2π)3k3
δ(3)(k + k′). (39)

It is convenient to phrase this in terms of the RMS strain of gravitational waves. By summing the two polarizations,
we find that

〈hij(k, 0)hij(k
′, 0)〉tensor =

32π(2π)3H2
I

k3
δ(3)(k + k′), (40)

where the subscript “tensor” reminds us that only the tensor (and not the scalar) contribution is included. Then
using

hij(x, 0) =

∫

hij(k, 0)eikx d3k

(2π)3
, (41)
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we find that the variance of the strain is

〈hijhij(x, 0)〉tensor =

∫

〈hij(k, 0)hij(k
′, 0)〉tensor

d3k d3k′

(2π)6
=

∫

32πH2
I

(2π)3k3
d3k. (42)

Then the contribution per logarithmic range in k to the variance 〈hijhij〉 is 4πk3 times the integrand:

d〈hijhij(x, 0)〉tensor

d ln k
=

128π2H2
I

(2π)3
=

16H2
I

π
. (43)

There is therefore a strain of h2
rms = 1

8 〈hijhij〉tensor or

d(h2
rms)

d ln k
=

2H2
I

π
=

3

4π2
V (φe). (44)

This is the standard result for gravitational waves generated during inflation.
Note that the perturbation spectrum is logarithmically divergent: gravitational waves are generated on all scales.

This is not a problem since the waves are “generated” (transition from adiabatic fluctuations to frozen in) at the time
of horizon exit η ∼ −k−1, so that at short wavelengths there is a cutoff (but we may never find it). At wavelengths
longer than the present-day horizon scale we cannot measure the gravitational waves.

The most promising way to detect inflationary GWs is through the polarization of the CMB. Here ḣij generates a
quadrupole moment of the radiation field, which re-scatters off free electrons during the recombination epoch (or later,
during reionization) to produce polarized radiation. The method is sensitive to wavenumbers of k ∼ 10−3.5 − 10−2

Mpc−1.
The inflationary gravitational wave background, if detected, would provide a direct handle on V (φe) and hence

the energy scale of inflation. This would be great, although it is not guaranteed: V (φe) could be so small as to be
undetectable. If we were so lucky as to find inflationary gravitational waves, however, one might imagine taking the
next step. Remember that φe varies slowly during inflation, so if we go one e-fold of expansion later (N decreases by
1) then the gravitational wave amplitude changes. Over a narrow range of wavenumbers one expects variation of the
form

d(h2
rms)

d ln k
∝ knt (45)

for some exponent nt (the tensor spectral index) where

nt =
d lnV (φe)

d ln k
=
d lnV (φe)

HI dt
= V ′(φe)φ,tHIV (φe) = −[V ′(φe)]

23H2
I V (φe) = −[V ′(φe)]

28π[V (φe)]
2 = −2ǫV. (46)

Therefore the tensor spectral index, if ever measured, would provide information on not just the potential during
inflation but its derivative (the slow-roll parameter).


