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I. OVERVIEW

Reading: the subject is not covered at all in MTW, since most of the development is more recent. My principal
recommendations for more in-depth reading on the subject of cosmological perturbations is Dodelson, Modern Cos-

mology (2003). However none of the standard references develop the subject from the Hamiltonian perspective as
done here.

II. COSMOLOGICAL PERTURBATIONS IN FOURIER SPACE

We begin by considering a spatially flat FRW universe, which has background metric

ds2 = a2(η)(−dη2 + δijdxidxj). (1)

Note here that we use the conformal time η instead of t as our time coordinate, for consistency with the rest of
cosmological perturbation theory. In this case, the spatial metric is γij(η, xk) = a2(η)δij . We will also introduce the
conformal Hubble rate,

H(η) =
d ln a(η)

dη
= aH (2)

in terms of the conventional Hubble rate H . Here we will only use H to avoid confusion with the Hamiltonian.

A. The Fourier space transformation

Our first step here is to try to generalize this to small spatial perturbations, which we will do in Fourier space. In
general we have

γij(η, xn) = a2(η)

[

δij +

∫

hij(η, kn)eikmxm d3k

(2π)3

]

. (3)

We have the restriction hij(kn) = h∗
ij(−kn) in order for the spatial metric to be real. A similar transformation of the

lapse and shift is possible:

α(η, xn) = a(η)

[

1 +

∫

A(η, kn)eikmxm d3k

(2π)3

]

(4)

and

Ni(η, xn) = a2(η)

∫

Bi(η, kn)eikmxm d3k

(2π)3
. (5)

There is of course an inverse transform:

hij(η, kn) =

∫

[

a−2(η)γij(η, xn) − δij

]

e−ikmxm

d3x. (6)
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As always, when one transforms the coordinates it is necessary to also transform the conjugate momenta so as to
make the transformation canonical. Furthermore, if the transformation is time-dependent, the Hamiltonian is changed
as well. In our case, the type of transformation we need is a time-dependent point transformation, which in general
can be written as

QI = QI(qJ , η), pI =
∂QJ

∂qI

∣

∣

∣

∣

η

PJ , and Hnew = Hold + PI
∂QI

∂η

∣

∣

∣

∣

q

. (7)

In the above problem, the conjugate momenta to A and Bi remain zero, but the conjugate momenta to hij (which
we will denote ϑij) are now

ϑij(η, kn) =

∫

δγkl(η, xm)

δhij(η, kn)
Πkl(η, xm) d3x = a2(η)

∫

Πij(η, xn) eikmxm d3x

(2π)3
. (8)

The inverse transformation is simply

Πij(η, xn) = a−2(η)

∫

ϑij(η, kn) e−ikmxm

d3k. (9)

Note the − sign in the complex exponential: the wave vector k mode of the spatial metric is canonically conjugate to
the −k mode of the extrinsic curvature.

Finally, we investigate the change in the Hamiltonian. If we fix γij , then from Eq. (6):

∂hij(η, kn)

∂η
= −2a−2(η)H(η)

∫

γij(η, xn)e−ikmxm

d3x = −2H(η)hij(η, kn) + 2(2π)3H(η)δ(3)(kn). (10)

Then the correction to the Hamiltonian is

∆H1 =

∫

ϑij(η, kn)
∂hij(η, kn)

∂η

∣

∣

∣

∣

γ

d3kn = −2H(η)

∫

ϑij(η, kn)hij(η, kn) d3kn + 2(2π)3H(η)ϑij(η,0). (11)

B. Removal of the zero-mode

The above system has one drawback: the conjugate momentum to our perturbation ϑij(η, kn), is not zero in the
background spacetime. Instead, the conjugate momentum is

ϑij(η, kn)
∣

∣

bkgnd
= a2(η)δ(3)(kn)Πij |bkgnd =

−a2H(η)

8π
δijδ(3)(kn). (12)

This is somewhat awkward since we want a conjugate momentum that is a perturbation variable as well. The solution
is to do a canonical transformation that simply shifts the momentum,

κij(η, kn) = ϑij(η, kn) +
a2H(η)

8π
δijδ(3)(kn). (13)

This comes with an associated change to the Hamiltonian,

∆H2 = − [a2H]˙

8π
δijhij(η,0). (14)

We now have a system of canonically conjugate variables with which to do perturbation theory.

C. The GR Hamiltonian

To finish the job, we must re-cast the original Hamiltonian in terms of hij and κij . In doing so, we will work only
to second order in the perturbations, as this is what is required to get the linear perturbations. We find that

∫

αGijklΠ
ijΠkl(η, xn) γ−1/2 d3x = a2

∫ [

1 +

∫

A(k)eikx d3k

(2π)3

]
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×
{

δikδjl −
1

2
δijδkl + 2

∫

[δjlhik(k) − 1

2
δklhij(k)]eikx d3k

(2π)3

+

∫

[hik(k)hjl(k
′) − 1

2
hij(k)hkl(k

′)]ei(k+k′)x d3k

(2π)3
d3k′

(2π)3

}

×
[

− H
8π

δij + a−2

∫

κij(−k)e−ikxd3k

] [

− H
8π

δkl + a−2

∫

κkl(−k)e−ikxd3k

]

×
{

1 − 1

2

∫

hmm(k)eikx d3k

(2π)3

+
1

8

∫

[hmm(k)hnn(k′) + 2hmn(k)hmn(k′)]ei(k+k′)x d3k

(2π)3
d3k′

(2π)3

}

d3x. (15)

Here we have used the rule that, to second order in h,

det(δij + hij) = 1 + hii +
1

2
(hiihjj − hijhij) + ... (16)

and hence

det(δij + hij)
−1/2 = 1 − 1

2
hii +

1

8
(hiihjj + 2hijhij) + ... . (17)

We can simplify Eq. (15) by performing the x-integral; adding up the explicit terms quadratic in the perturbations,
and all products of linear terms, gives:

∫

αGijklΠ
ijΠkl(η, xn) γ−1/2 d3x =

a2H2

512π2

∫

[5hij(k)hij(−k) − 3hii(k)hjj(−k)]
d3k

(2π)3

+
H

16π

∫

[hii(k)κjj(k) − 2hij(k)κij(k)]d3k

+a−2

∫

[κij(k)κij(−k) − 1

2
κii(k)κjj(−k)](2π)3d3k

− a2H2

256π2

∫

A(k)hii(−k)
d3k

(2π)3
+

H
8π

∫

A(k)κii(k)d3k

+[zero mode], (18)

where “zero mode” refers to terms that only involve the k = 0 Fourier mode.
For the Ricci scalar term, we recall that

∫

α (3)Rγ1/2 d3x (19)

has terms with no dependence on A and terms that depend on A. For the latter, we recall that to linear order

(3)R = a−2(hij,ij − hii,jj), (20)

and so we can see that the A-containing terms are

a2

∫

A(k)[−kikjhij(−k) + k2hii(−k)]
d3k

(2π)3
. (21)

For the terms with no A-dependence, we see that these equal a
∫

(3)Rγ1/2 d3x. Now the variation of this integral

is −a
∫

(3)Gijδγij
√

γ d3x, which vanishes for a spatially flat 3-manifold, so it follows that a
∫

(3)Rγ1/2 d3x has only
quadratic (and higher) terms in hij . Furthermore, a quadratic term in the Taylor expansion in γij − a2δij is equal to
half the (functional) derivative times the perturbation. These must be given by

a

∫

(3)Rγ1/2 d3x = −1

2
a

∫

(3)Gijδγij
√

γ d3x + O(h3)

= −1

4
a2

∫

(2hk(i,j)k − hij,kk − hkk,ij − δijhkl,kl + δijhkk,ll)hij d3x

=
1

4
a2

∫

[2kjkkhik(k)hjk(−k) − k2hij(k)hij(−k) − 2kikjhkk(k)hij(−k) + k2hii(k)hjj(−k)]
d3k

(2π)3
.

(22)
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Finally, we need the terms involving the shift. These are given by

2

∫

ΠijNi|j d3x = 2

∫

[ΠijNi,j − (3)Γk
ijNkΠij ] d3x

=

∫

[−2Πij
,jNi − γkl(2γil,j − γij,l)NkΠij ] d3x

=

∫

[−2Πij
,jNi +

H
8π

a−2δkl(2γil,j − γij,l)Nkδij ] d3x, (23)

where in the last term in the last line we worked only to second order in perturbation theory and replaced Πij by its
background value. Writing this in terms of Fourier modes yields

2

∫

ΠijNi|j d3x = i

∫ [

−2ki(2π)3κij(−k) +
H
4π

a2kihji(k) − H
8π

a2kjhii

]

Bj(−k)
d3k

(2π)3
. (24)

Adding together all the GR terms, plus the corrections ∆H1 + ∆H2, and throwing out the zero modes gives

HGR + ∆H =
a2H2

32π

∫

[5hij(k)hij(−k) − 3hii(k)hjj(−k)]
d3k

(2π)3

+H
∫

[hii(k)κjj(k) − 4hij(k)κij(k)]d3k

+16πa−2

∫

[κij(k)κij(−k) − 1

2
κii(k)κjj(−k)](2π)3 d3k

− a2

64π

∫

[2kikjhik(k)hjk(−k) − k2hij(k)hij(−k) − 2kikjhkk(k)hij(−k) + k2hii(k)hjj(−k)]
d3k

(2π)3

+

∫ [

−a2H2

16π
hii(k) + 2H(2π)3κii(−k) +

a2

16π
kikjhij(k) − a2

16π
k2hii(k)

]

A(−k)
d3k

(2π)3

+i

∫
[

−2ki(2π)3κij(−k) +
H
4π

a2kihji(k) − H
8π

a2kjhii(k)

]

Bj(−k)
d3k

(2π)3
+ [zero mode]. (25)

III. THE MATTER TERMS

We consider the matter terms only for the simplest case – that of cold dark matter (CDM), consisting of massive
particles that only interact gravitationally and have zero velocity dispersion. It is convenient to describe such particles
as having a mean number density today of n0 = ρ0/µ and mass µ. Then the Lagrangian describing these particles is

L = −µn0

∫

dτ

dη
d3x = −ρ0

∫

dτ

dη
d3x, (26)

where dτ is the proper time element for particles at Lagrangian position x. If the particles have Lagrangian coordinate
displacement ξi(η, xk), then the proper time elapsed is

dτ

dη
=

√

−gµν
dxµ

dη

dxν

dη

= a

√

[1 + A(xk + ξk)]2 − [Bi(xk)]2 + 2Bi(xk + ξk)ξ̇i − [δij + hij(xk + ξk)]ξ̇iξ̇j

≈ a

√

1 + 2A(xk) + [A(xk)]2 + 2A,i(xk)ξi − [Bi(xk)]2 + 2Bi(xk)ξ̇i − ξ̇iξ̇i

≈ a

{

1 + A(xk) + A,i(x
k)ξi − 1

2
[Bi(x

k)]2 + Bi(x
k)ξ̇i − 1

2
ξ̇iξ̇i

}

. (27)

That is,

LCDM = −ρ0a

∫ {

1 + A(xk) + A,i(x
k)ξi − 1

2
Bi(x

k)Bi(x
k) + Bi(x

k)ξ̇i − 1

2
ξ̇iξ̇i

}

d3x, (28)
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or – in Fourier space –

LCDM = −ρ0a

∫ {

ikiA(k)ξi(−k) − 1

2
Bi(k)Bi(−k) + Bi(k)ξ̇i(−k) − 1

2
ξ̇i(k)ξ̇i(−k)

}

d3k

(2π)3
+ [zero mode], (29)

where

ξi(k) =

∫

ξi(x)e−ikx d3x ↔ ξi(x) =

∫

ξi(k)eikx d3k

(2π)3
. (30)

This enables us to determine the conjugate momentum to the displacement field,

pi(k) =
δL

δξ̇i(k)
= (2π)−3ρ0a[−Bi(−k) + ξ̇i(−k)], (31)

implying

ξ̇i(k) = Bi(k) +
(2π)3

ρ0a
pi(−k). (32)

The CDM Hamiltonian is then

HCDM =

∫

pi(k)ξ̇i(k) d3k − LCDM

=

∫ {

iki
ρ0a

(2π)3
A(k)ξi(−k) + Bi(k)pi(k) +

(2π)3

2ρ0a
pi(k)pi(−k)

}

d3k + [zero mode]. (33)

Finally, if there is a cosmological constant, an additional contribution to the Lagrangian of −Λ/8π times the
4-volume per unit time arises. This is

LΛ = − Λ

8π

∫

αγ1/2 d3x

= − Λ

8π
a4

∫

[1 + A(x)]

{

1 +
1

2
hii(x) +

1

8
[hii(x)hjj(x) − 2hij(x)hij(x)]

}

d3x

= − Λ

8π
a4

∫ [

1

2
A(k)hii(−k) +

1

8
hii(k)hjj(−k) − 1

4
hij(k)hij(−k)

]

d3k

(2π)3
. (34)

This has no effect whatsoever on the conjugate momenta, but it leads to an additional Hamiltonian that is −LΛ:

HΛ =
Λ

8π
a4

∫ [

1

2
A(k)hii(−k) +

1

8
hii(k)hjj(−k) − 1

4
hij(k)hij(−k)

]

d3k

(2π)3
. (35)

The total Hamiltonian is of course H = HGR + HΛ + HCDM.

IV. SCALAR-VECTOR-TENSOR DECOMPOSITION

Our next order of business is to solve for the behavior of the perturbations in a ΛCDM universe – i.e. one consisting
principally of cold dark matter, possibly with a cosmological constant, and spatially flat geometry. This is of direct
interest since it is the universe we appear to actually inhabit!

Our lives will be made easier by the use of the symmetries of the flat FRW spacetime. First, we can see that each
Fourier mode will evolve independently: to be explicit, all terms in the Hamiltonian are integrals of the form

∫

[coordinate(k) coordinate(−k) + coordinate(k)momentum(k) + momentum(k)momentum(−k)]d3k. (36)

Inspection then shows that the coordinates in Fourier mode k and the conjugate momenta of Fourier mode −k form
a closed system. They may therefore be considered separately from each other Fourier mode. This is, of course,
simply a consequence of spatial homogeneity: the Fourier modes are the irreducible representations of the group of
displacements R

3 (under vector addition).
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A second simplification concerns the isotropy of the universe. Clearly this means that the behavior of the Fourier
mode k depends only on its magnitude and not its direction: therefore we may consider k to point along the 3-axis. But
we may make an even stronger statement about the nature of the perturbations. They can be decomposed according
to their spin around the k-axis, which depends on how they transform under rotations (and reflections through a
plane containing the 3-axis). For example, if we take the displacement field ξi, we find that under a rotation by angle
Ψ around the 3-axis:

(

ξ1

ξ2

)

new

=

(

cosΨ sin Ψ
− sinΨ cosΨ

) (

ξ1

ξ2

)

old

and ξ3
new = ξ3

old. (37)

We therefore say that ξ1 and ξ2 form a spin-1 or vector perturbation, whereas ξ3 forms a spin-0 or scalar perturbation.
The terminology reflects the behavior under these rotations and does not imply that the objects in

question are 3-vectors or 4-vectors!

For the case of the metric perturbations, we can decompose hij in a similar way:

hij =





hT + h+ h× h1

h× hT − h+ h2

h1 h2 hL



 (38)

and

κij =





κT + κ+ κ× κ1

κ× κT − κ+ κ2

κ1 κ2 κL



 . (39)

Due to the repeated nature of some of the components, the +, ×, 1, 2, and T components have factors of 1
2 :

ḣ+(k) =
1

2

δH

δκ+(k)
, (40)

whereas no such factor applies to the L components. Here the L and T components are scalar perturbations, the 1
and 2 components form a vector perturbation, and the + and × components form a spin-2 or tensor perturbation,
since they transform as:

(

h+

h×

)

new

=

(

cos 2Ψ sin 2Ψ
− sin 2Ψ cos 2Ψ

) (

h+

h×

)

old

. (41)

The requirement of invariance of the Hamiltonian under rotations around the 3-axis implies that a quadratic
Hamiltonian only contains terms that are quadratic in the scalars, quadratic in the vectors, and quadratic in the
tensors. Cross-terms, e.g. scalar times vector, are not invariant and are not allowed. Furthermore, reflection symmetry
across the 13-plane forbids terms that mix 1 and 2 components (e.g. h1ξ

2) or that mix + and × components (e.g.
h+h×); and invariance under rotation around the 3-axis by π/m implies that the “1 component” and “2 component”
will have the same contribution to the Hamiltonian.

The rather dramatic consequence of this is that:

• The scalar, vector, and tensor perturbations evolve independently of each other.

• The two components of the vector perturbations (1 and 2) obey the same equations of motion and are indepen-
dent of each other.

• The two components of the tensor perturbations (+ and ×) obey the same equations of motion and are inde-
pendent of each other.

Well, as always in physics, symmetry makes life a lot easier.
In cosmologies with more general types of matter, higher spin perturbations are legal – e.g. in the case of the CMB,

the octopole moment of the temperature anisotropy has a spin-3 piece, and the order-ℓ multipole has pieces up to
spin ℓ. However, in linear perturbation theory (quadratic Hamiltonians), primordial density or metric perturbations
can only source the scalar, vector, and tensor perturbations in the CMB. Higher order multipoles could be sourced
by nonlinear interactions (i.e. cubic terms in the perturbation Hamiltonian such as that giving rise to gravitational
lensing of the CMB), which we won’t study.

We will now study the types of perturbations in order from easiest (tensors) to hardest (scalars).
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V. TENSOR PERTURBATIONS

We consider first the tensor perturbations as these are easiest to analyze. The CDM plays no direct role in these
(all it does is affect the background on which the perturbations play out). The tensors come in two polarizations,
+ and ×, which are equivalent – we will consider here the + perturbation. Essentially we are writing

hij(k) =





h+ h× 0
h× −h+ 0
0 0 0



 (42)

with k along the z-axis, and

κij(k) =





κ+ κ× 0
κ× −κ+ 0
0 0 0



 . (43)

In this case, the + polarization contribution from Eq. (25) is

Htensor
GR =

∫

[a2k2

32π
(2π)−3h+(k)h+(−k) + 32πa−2(2π)3κ+(k)κ+(−k) − 8Hh+(k)κ+(k)

+
5a2H2 − a4Λ

16π
(2π)−3h+(k)h+(−k)

]

d3k + [+ ↔ ×]. (44)

The equations of motion for such a perturbation can now be written down:

ḣ+(k) =
1

2

δHtensor
GR

δκ+(k)
= 32πa−2(2π)3κ+(−k) − 4Hh+(k). (45)

and

κ̇+(k) = −1

2

δHtensor
GR

δh+(k)
=

[

−a2k2

32π
− 5a2H2 − a4Λ

16π

]

(2π)−3h+(−k) + 4Hκ+(k). (46)

Then

ḧ+(k) = 32πa−2(2π)3[κ̇+(−k) − 2Hκ+(−k)] − 4Hḣ+(k) − 4Ḣh+(k)

= −k2h+(k) − 10H2h+(k) + 2a2Λh+(k) + 64πa−2(2π)3Hκ+(−k) − 4Hḣ+(k) − 4Ḣh+(k)

= −k2h+(k) − 10H2h+(k) + 2a2Λh+(k) + 2H[ḣ+(−k) + 4Hh+(k)] − 4Hḣ+(k) − 4Ḣh+(k)

= −k2h+(k) − 2Hḣ+(k) − 2(H2 − a2Λ)h+(k) − 4Ḣh+(k). (47)

This can be simplified using the Friedmann equation for the Hubble rate. We take the form

H2 = a2H2 =
8

3
πρ0a

−1 +
Λ

3
a2. (48)

Solving for ρ0 gives

8πρ0 = 3aH2 − Λa3. (49)

Taking the derivative of both sides and setting the left-hand side to ρ̇0 = 0 (and using ȧ = aH on the right-hand side)
gives

0 = 6aHḢ + 3aH3 − 3a3ΛH. (50)

This establishes that the coefficient of h+ on the right-hand side of Eq. (47) is simply −k2, and thus in a ΛCDM
universe:

ḧ+(k) + 2Hḣ+(k) + k2h+(k) = 0. (51)

It is worth noting that A and Bi make no appearance here: that is because they contain 2 scalars (A and B3) and
a vector pair (B1, B2) and as such have no tensor components. We conclude that the gauge degrees of freedom have
no effect on the tensor modes: in linear perturbation theory, h+ and h× are gauge-invariant.
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We are finally interested in the solution of Eq. (51). In the case of pure matter domination (no Λ), the equation
can be solved analytically; we have H = 2/η so

ḧ+(k) +
4

η
ḣ+(k) + k2h+(k) = 0. (52)

The standard solution method for equations of this form is to find the behavior at η ≪ k−1. In this case, the last
term is negligible and we have a dimensionally homogeneous equation. It has power law solutions h+ ∝ ην where

ν(ν − 1) + 4ν = 0, (53)

so either ν = 0 or ν = −3. The second solution is decaying at early times and is of only theoretical interest. We then
find the power series expansion,

h+ = h+,0

∞
∑

j=0

cj(kη)j (54)

with c0 = 1. Equation (52) gives, for the order ηj−2 term,

j(j + 3)cj + cj−2 = 0, (55)

so we see that all the odd cj vanish, and by induction:

c2n =
(−1)n

(2n)(2n + 3) · (2n − 2)(2n + 1) · ... · (2)(5)
= 3(2n + 2)

(−1)n

(2n + 3)!
. (56)

Using the rule that in a power series multiplying by the exponent is equivalent to the η ∂/∂η, and the power series
for the sine, we see that

h+ = h+,0 3

(

η
∂

∂η
+ 2

)[

− sinkη

(kη)3
+

1

(kη)2

]

= −3h+,0

(

η
∂

∂η
+ 2

)

sinkη

(kη)3

= −3h+,0

[

kη cos kη

(kη)3
− 3kη sin kη

(kη)4
+ 2

sin kη

(kη)3

]

= 3h+,0
sin kη − kη cos kη

(kη)3
. (57)

Thus, the evolution of the metric perturbation is to start at a constant value for η ≪ k−1: this is expected since
the wavelength is much longer than the horizon size and hence the perturbation is “frozen.” When η ∼ k−1 the
perturbation amplitude begins to evolve, and at η ≫ k−1 it oscillates with an envelope that decays as η−2 ∝ a−1.
This corresponds to a standing gravitational wave that decays adiabatically.

VI. VECTOR PERTURBATIONS

We next consider the vector perturbations, treating the 1-component of the perturbation (in this section, we will
denote the polarizations by H and V for “horizontal” and “vertical” rather than 1 and 2). Then the Hamiltonian
includes GR, Λ, and CDM terms:

Hvector =

∫

{5a2H2

16π
(2π)−3hH(k)hH(−k) − 4HhH(k)κH(k) +

16π

a2
(2π)3κH(k)κH(−k) − Λ

16π
a4hH(k)hH(−k)

+
(2π)3

2ρ0a
pH(k)pH(−k) +

[

−2ikκH(−k) + i
H
4π

(2π)−3a2khH(k) + pH(−k)
]

BH(−k)
}

d3k

+[H ↔ V]. (58)

The quantity in square brackets is constrained to be zero as part of the legal initial condition – that is, we have the
vector constraint:

−2ik(2π)3κH(−k) + i
H
4π

a2khH(k) + pH(−k) = 0. (59)
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That is, given the vector part of the momentum density, one combination of the metric perturbation and the extrinsic
curvature perturbation is immediately known.

We are also interested in the equations of motion. Note that ξH(k) makes no appearance in Eq. (58) – this
corresponds to a symmetry in which the particles are re-labeled: the “reference” position of a particle (remember we
are using a Lagrangian description!) can be displaced by any divergence-free field (such as the spin-1 part of a 3-
vector) with no consequence to the dynamics. The corresponding conservation law is that of the conjugate momentum
pH(k). In fact ikpH(k) is the vorticity, which is part of the more general rule that the freezing of vortex lines is the
“conservation law” associated with the re-labeling symmetry.

The evolution equation for the particle displacement is simply

ξ̇H(k) =
δHvector

δpH(k)
=

(2π)3

ρ0a
pH(−k) + BH(k). (60)

This equation makes sense: the particle displacement rate is simply associated with the momentum per unit mass,
plus a term associated with how far the coordinate system moves relative to the normal observer (the shift). In fact
this equation integrates easily:

ξH(k, η) =
(2π)3

ρ0
pH(−k)

∫

a−1 dη +

∫

BH(k, η) dη. (61)

The particle’s physical velocity relative to the normal observer scales as a−1, i.e. it decreases as the Universe expands.
Thus in the ΛCDM case, this vector mode is always decaying. Of course, the (additive) time-independent constant
in ξH(k, η) has no physical meaning.

We still have to figure out the evolution equation for the metric perturbations. In fact, Eq. (58) gives these – for
the metric derivative, we find

ḣH(k) =
1

2

δHvector

δκH(k)
= −2HhH(k) +

16π

a2
(2π)3κH(−k) − ikBH(k) (62)

and hence, using the constraint equation,

ḣH(k) = −8πia−2pH(−k) − ikBH(k). (63)

This gives a deterministic evolution for the spatial metric perturbation; but note that as a becomes large, the first
term drops to zero and the second term is pure gauge. We thus conclude that vector perturbations decay away

in an expanding universe, except for a gauge degree of freedom that has arbitrary behavior. A simple choice of
gauge, such as BH = −γk−1hH, suffices to send the vector metric perturbation to zero in the future.

It is possible to write down the evolution equation for κH(−k), but it is redundant with the constraint Eq. (59).
We conclude that vector perturbations in ΛCDM correspond to a single physical vorticity mode, which is decaying.

VII. SCALAR PERTURBATIONS

Finally, we come to the scalar perturbations. The scalar sector has more coordinates and conjugate momenta than
the other sectors: the coordinates are ξL ≡ ξ3, hT, and hL, in addition to the nondynamical A and BL ≡ B3.

Hscalar =

∫

{a2H2

16π
(2π)−3[−hT(k)hT(−k) + hL(k)hL(−k) − 6hT(k)hL(−k)]

+H[−4hT(k)κT(k) + 2hT(k)κL(k) + 2hL(k)κT(k) − 3hL(k)κL(k)]

+
16π

a2
(2π)3

[

−2κT(k)κL(−k) +
1

2
κL(k)κL(−k)

]

− a2k2

32π
hT(k)hT(−k)

−Λa4

64π
(2π)−3[4hT(k)hL(−k) + hL(k)hL(−k)] +

(2π)3

2ρ0a
pL(k)pL(−k)

+(2π)−3A(−k)
[

−a2(H2 + k2)

8π
hT(k) − a2H2

16π
hL(k) + 2H(2π)3[2κT(−k) + κL(−k)]

+
Λa4

8π
hT(k) +

Λa4

16π
hL(k) − iρ0akξL(k)

]

+iBL(−k)
[

−2kκL(−k) − a2H
4π(2π)3

khT(k) +
a2H

8π(2π)3
khL(k) − ipL(−k)

]}

d3k. (64)

The factors multiplying A(−k) and BL(−k) are constraints and must be zero.
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A. Matter perturbations

We may solve the dynamics of the scalar perturbations by the standard construction of the Hamiltonian equations
of motion. For the CDM, this construction gives

ξ̇L(k) =
δHscalar

δpL(k)
=

(2π)3

ρ0a
pL(−k) + BL(k) (65)

for the displacement and

ṗL(−k) = − δHscalar

δξL(−k)
= − iρ0ak

(2π)3
A(k) (66)

for the momentum.

B. Metric perturbations

The spatial metric perturbations hL and hT also obey evolution equations. These are:

ḣL(k) =
δHscalar

δκL(k)
= H[2hT(k) − 3hL(k)] +

16π

a2
(2π)3[−2κT(−k) + κL(−k)] + 2HA(k) − 2ikBL(k) (67)

for the longitudinal-scalar part and

ḣT(k) =
1

2

δHscalar

δκT(k)
= H[−2hT(k) + hL(k)] − 16π

a2
(2π)3κL(−k) + 2HA(k) (68)

for the transverse-scalar part.
It is possible to work out the evolution equations for κT(k) and κL(k) separately, but it is easier to use the constraints

[the terms multiplying A and B in Eq. (64)] to solve for them. The BL constraint gives

κL(−k) =
a2H

16π(2π)3
[hL(k) − 2hT(k)] +

i

2k
pL(−k), (69)

and the A constraint gives

2κT(−k) + κL(−k) =
a2

32πH(2π)3
[2(H2 + k2 − Λa2)hT(k) + (H2 − Λa2)hL(k)] +

iρ0ak

2H(2π)3
ξL(k). (70)

This implies

κT(−k) =
a2

64πH(2π)3
[2(3H2 + k2 − Λa2)hT(k) + (−H2 − Λa2)hL(k)] +

iρ0ak

4H(2π)3
ξL(k) − i

4k
pL(−k). (71)

Equations (69) and (71) provide us the conjugate momenta to the metric without having to follow additional evolution
equations. We may use them to transform Eq. (68) into

ḣT(k) = −i
8π

a2k
(2π)3pL(−k) + 2HA(k). (72)

The longitudinal part also simplifies but with a bit more work:

ḣL(k) = − 1

2H [2(3H2 +k2−Λa2)hT(k)+(3H2−Λa2)hL(k)]− 8πiρ0k

aH ξL(k)+
16πi

ka2
(2π)3pL(−k)+2HA(k)−2ikBL(k).

(73)
This can be put in its conventional form using the Friedmann equation, 3H2 − Λa2 = 8πρ0a

−1. Then:

ḣL(k) = −k2

H hT(k) − 4πρ0

aH [2hT(k) + hL(k) + 2ikξL(k)] +
16πi

ka2
(2π)3pL(−k) + 2HA(k) − 2ikBL(k). (74)

Equations (72) and (74) allow us to describe the evolution of the spatial metric directly in terms of its “current”
value and the matter fields. The first-order nature of the scalar sector is a direct consequence of the constraints, and
tells us that the gravitational sector contains no scalar degrees of freedom.
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C. Solution in synchronous gauge

Equations (65) and (66) are general, but inspection of them shows that given any initial configuration, one may
choose a δ-function lapse

A(k) = −i
(2π)3

ρ0ak
pL(−k, ηinitial)δ(η − ηinitial − ǫ), (75)

which sets pL = 0 for all future time. Further, if we chose BL(k) = 0 then we have constructed a gauge choice in
which the particle momenta (in the normal frame) are zero and the Lagrangian displacements are constant. This
gauge is called the synchronous gauge, and is used in almost all numerical cosmological perturbation theory codes. In
synchronous gauge, the CDM particles follow trajectories of fixed spatial coordinates xi, and these threads are normal
to the slices of constant t. Note that the synchronous gauge is not unique: one can still add any constant to ξL(k)
by inserting a δ-function in the shift. For our purposes here, we will take ξL(k) to be zero – this is a special choice of
synchronous gauge.

In this special synchronous gauge, the evolution equations become

ḣT(k) = 0 and ḣL(k) = −k2

H hT(k) − 4πρ0

aH [2hT(k) + hL(k)]. (76)

Equation (76) is a system of two first-order ODEs and has two linearly independent solutions. It is straightforward
to find both. Clearly hT is constant (independent of η): we set hT(k) = 2C1. Then we set h = 2hT(k) + hL(k), and
see that

ḣ +
4πρ0

aH h = −2k2

H C1. (77)

This is a linear ODE with variable coefficients and can be solved by standard methods. We define the integrating
factor

µ(η) ≡
∫

4πρ0

aH dη = 4πρ0

∫

1

a2H2
da = 12πρ0

∫

1

a(8πρ0 + Λa3)
da. (78)

Using the rule that
∫

1

a(1 + a3/a3
0)

da =
1

3

∫

1

y(1 + y)
dy

=
1

3

∫ (

1

y
− 1

1 + y

)

dy

=
1

3
ln

y

1 + y
+ const

=
1

3
ln

a3

1 + a3/a3
0

+ const (79)

(where we substituted y = a3/a3
0), we may identify this with the integrand in µ for a3

0 = 8πρ0/Λ and set

eµ = a3/2

(

1 +
Λa3

8πρ0

)−1/2

. (80)

(Technically there could be a constant prefactor but we don’t care.) Here a0 denotes the scale factor at which the
mean density of the universe is Λ/8π, i.e. at which the matter and Λ densities are equal. For a ≪ a0 the cosmological
constant is irrelevant, and for a ≫ a0 the cosmological constant dominates.

Then

d

dη
(eµh) = eµ(ḣ + µ̇h) = −2eµ k2C1

H , (81)

and so

h = −2k2C1e
−µ

∫

eµH−1 dη = −2k2C1e
−µ

∫

eµ 1

aH2
da



12

= −k2C1

2πρ0
e−µ

∫

eµa
dµ

da
da

= −k2C1

2πρ0
e−µ

[

aeµ −
∫

eµ da
]

= −k2C1

2πρ0

[

a − e−µ

∫ a

0

eµ da
]

+ C2e
−µ, (82)

where we have explicitly separated out the integration constant C2.
It is conventional to define the growth function G(a) as

G(a) ≡ 5

3

[

a − e−µ

∫ a

0

eµ da
]

, (83)

so that h = −(3k2C1/10πρ0)G(a) + C2e
−µ.

We thus find the overall solution:

hT(k) = 2C1, hL(k) = −4C1 −
3k2C1

10πρ0
G(a) + C2a

−3/2

(

1 +
Λa3

8πρ0

)1/2

. (84)

The CDM particles of course remain stationary in this coordinate system, so the density perturbation in synchronous
gauge is simply the perturbation to det γ:

δρ

ρ̄
(k)

∣

∣

∣

∣

sync

= −1

2
hL(k) − hT(k) =

3k2C1

20πρ0
G(a) − 1

2
C2a

−3/2

(

1 +
Λa3

8πρ0

)1/2

. (85)

(Of course this is gauge-dependent.)
The C2 solution diverges at early times, and so in a universe that started with small perturbations (as seen in

the cosmic microwave background) we suspect it to be tiny. (There is a subtlety here: it is excited during the
radiation-dominated epoch on small scales, but we aren’t considering radiation yet.) As far as the growth of large
scale structure, galaxy formation, etc., C2 can be ignored. This leaves us with C1, which is the one that could be
well-behaved at early times.

D. Growth function

The growth of large scale structure with time in linear perturbation theory is thus driven by the single function
G(a). In cosmologies with Λ = 0, we have eµ = a3/2 and

G(a) =
5

3

[

a − e−µ

∫ a

0

eµ da
]

=
5

3

[

a − a−3/2

∫ a

0

a3/2 da
]

=
5

3

[

a − 2

5
a
]

= a. (86)

Thus matter density perturbations grow linearly with the scale factor.
In universes with a cosmological constant (like ours?) the growth function behaves differently. There is not an

analytic solution for the integral, but we may Taylor expand:

G(a) =
5

3

[

a − a−3/2
(

1 +
a3

a3
0

)1/2
∫ a

0

a3/2
(

1 +
a3

a3
0

)−1/2

da
]

≈ 5

3

[

a − a−3/2
(

1 +
a3

2a3
0

− a6

8a6
0

)

∫ a

0

a3/2
(

1 − a3

2a3
0

+
3a6

8a6
0

)

da
]

≈ 5

3

[

a − a−3/2
(

1 +
a3

2a3
0

− a6

8a6
0

)

a5/2
(2

5
− a3

11a3
0

+
3a6

68a6
0

)]

≈ 5

3
a
[

1 −
(2

5
+

6a3

65a3
0

− 48a6

935a6
0

)]

(87)

so

G(a) = a
[

1 − 2a3

13a3
0

− 16a6

187a6
0

+ ...
]

. (88)
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Thus we see that the cosmological constant causes the growth of structure to proceed more slowly than

in an Ωm = 1 universe. This is the basis for several of the tests of dark energy (cluster abundance, gravitational
lensing ...).

Even more interesting is the behavior of the growth function at a ≫ a0, i.e. in the far future. We may solve this
by writing

G(a) =
5

3

∫ a

0

[1 − e−µ(a)+µ(a′)] da′

=
5

3

∫ a

0

[

1 − a′3/2(a3
0 + a′3)−1/2

a3/2(a3
0 + a3)−1/2

]

da′

=
5

3

∫ a

0

[

1 − (a3
0a

−3 + 1)1/2

(a3
0a

′−3 + 1)1/2

]

da′. (89)

This integral converges in the limit of a → ∞: we find

G(a = ∞) =
5

3

∫ ∞

0

[

1 − (a3
0a

′−3 + 1)−1/2
]

da′. (90)

Setting a′ = a0y, this simplifies to

G(a = ∞) =
5

3
a0

∫ ∞

0

[

1 − (y−3 + 1)−1/2
]

dy, (91)

where the integrand behaves as ∝ y3/2 at small y and ∝ y−3 at large y. Thus the growth of structure in a Λ-dominated
cosmology eventually freezes: linear perturbations asymptotically approach a final state of finite density perturbation!


