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I. OVERVIEW

The next step is to proceed to construct the full Hamiltonian formulation of GR. Clearly this includes the Hamil-
tonian itself, but just as important is the canonical structure: what are the fields, what is conjugate to what, etc.

Reading:

• MTW §§21.6–21.8.

II. RECASTING THE LAGRANGIAN

The Lagrangian for GR is remarkably simple:

SGR =
1

16π

∫

R
√−g d4x → L =

1

16π

∫

R
√−g d3x. (1)

However, while the action is manifestly covariant, the construction of “initial conditions” and the time evolution
development necessitate breaking manifest general covariance: we must slice the spacetime as described in the previous
lecture. The task, then, will be to write the Lagrangian in terms of the metric, any spatial derivatives, and the first

time derivative. Only then can we employ the standard construction of the Hamiltonian. In this section, we explicitly
set the signature parameter to s = −1.

We will choose in this case as our basic variables the lapse α, the shift Ni, and the spatial metric γij associated
with slices Σt. All of SGR must be expressible in terms of these objects and their time derivatives – or, equivalently,
α̇, Ṅi, and Kij (since this is related to γ̇ij).

In this system, the determinant of the metric tensor is simply given by

g =

∣

∣

∣

∣

NiN
i − α2 Ni

Ni γij

∣

∣

∣

∣

=

∣

∣

∣

∣

NiN
i γikNk

Ni γij

∣

∣

∣

∣

− α2 |γij |

= 0 − α2γ = −α2γ. (2)

[In the second line, we have used the expansion of the determinant to extract the contribution from the −α2 term,
which multiplies the determinant of the (D − 1) × (D − 1) matrix γij ; and then the first determinant on the second
line must vanish, since the top row is equal to the linear combination of N1 times the second row, plus N2 times the
third row ... plus ND−1 times the last row.] Thus

√−g = α
√

γ. (3)

The handling of R is harder. First, we see that in Gaussian normal coordinates,

R = Rij
ij + Rti

ti + Rit
it = Rij

ij + 2Rti
ti = (D−1)R − Ki

jK
j
i + K2 + 2Rµα

νβnµnνγβ
α. (4)

The first and last expressions depend only on the surface and not on the nature of the coordinate system off the
surface, so they are equal in any general system. Most of the terms in the last expression depend only on first
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derivatives of the metric, but the Riemann tensor term is undesirable. We may recast it in a more useful form by
using

Rµα
νβnµnνγβ

α = Rα
µνβnµnνγβ

α

= Rα
µνβnµnν(δβ

α + nβnα)

= Rα
µναnµnν + Rα

µνβnµnνnβnα

= Rα
µναnµnν

= nα
;ανnν − nα

;ναnν

= (nα
;αnν);ν − nα

;αnν
;ν − (nα

;νnν);α + nα
;νnν

;α. (5)

Two of these terms are total derivatives. The others can be simplified by considering the tensor Xα
ν = nα

;ν . The
definition of extrinsic curvature gives the components X i

j = −Ki
j , and also

Xα
νnα = nα

;νnα =
1

2
(nαnα);ν = 0, (6)

so Xt
t = 0 and Xt

i = 0. Then

−nα
;αnν

;ν + nα
;νnν

;α = −K2 + Ki
jK

j
i . (7)

Combining with Eq. (4), we see that

R = (D−1)R − Ki
jK

j
i + K2 + 2(−K2 + Ki

jK
j
i ) + total derivative, (8)

which simplifies to

R = (D−1)R − K2 + Ki
jK

j
i + total derivative. (9)

Thus – aside from irrelevant total derivative terms – the Lagrangian reduces to

LGR =
1

16π

∫

[

(D−1)R − K2 + Ki
jK

j
i

]

α
√

γ d3x (10)

or

LGR =
1

16π

∫

[

(D−1)R − (γijKij)
2 + γijγklKikKjl

]

α
√

γ d3x. (11)

The extrinsic curvature, which appears explicitly here, is a function of γ̇ij :

Kij =
1

2α
(−γ̇ij + Ni|j + Nj|i); (12)

it is here that one finds all the dependence on γ̇ij (so that there is dynamics!) and on the shift Ni.

III. HAMILTONIAN OF GR

Now we are finally ready to Hamiltonianize Einstein’s equations. We first find the conjugate momenta, and then
construct the Legendre transform.

A. Conjugate momenta

We consider here only the case where the matter Lagrangian depends only on the fields and on the metric tensor,
and not on the derivatives of the metric. This allows us to build the conjugate momenta only from LGR. This is true
of e.g. the swarm of particles, electromagnetic fields, and scalar fields; if it were not true then of course the conjugate
momenta would be affected.
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So we begin with the spatial metric: its time derivative appears only in Kij , and the relation between Kij and γ̇ij

is merely a factor of −1/(2α). Then the conjugate momenta to the spatial metric are

Πij =
δLGR

δγij
=

(

− 1

8π
γijγklKkl +

1

8π
γikKklγ

jl

) −1

2α
α
√

γ, (13)

or

Πij =
1

16π
(Kγij − Kij)

√
γ. (14)

Note that the conjugate momentum is a (D−1)×(D−1) symmetric tensor, except for the volume factor
√

γ associated
with the functional derivative (which would not be in a standard tensor). We see that the extrinsic curvature is (aside
from the trace term) conjugate to the spatial metric. It is possible to solve for the extrinsic curvature in terms of the
conjugate momentum by taking the trace of Eq. (14), yielding

16π

D − 2
γ−1/2Π = K, (15)

and then

Kij = 16πγ−1/2

(

1

D − 2
Πγij − Πij

)

. (16)

This will be very useful in building the Hamiltonian.
It is natural to ask what are the conjugate momenta to α and Ni, which we denote by Πα and [ΠN ]i. Since the

time derivatives of the lapse and shift do not appear in the Lagrangian, the answer is simple:

Πα = 0 and [ΠN ]i = 0. (17)

These are the primary constraints. In general, constraints in Hamiltonian mechanics restrict us to subspaces of the
overall phase space. They tell us that out of what appear to be 20 independently specifiable functions at each point
(the 10 metric components and their conjugate momenta), in fact 4 of the conjugate momenta are not real degrees of
freedom.

B. Hamiltonian

The Hamiltonian is constructed by the usual Legendre transform method. For the purely GR parts of the Hamil-
tonian, we have

HGR =

∫

(Πij γ̇ij + [ΠN ]iṄi + Παα̇) d3x − LGR. (18)

We’ve already seen that Πα = 0 and [ΠN ]i = 0, so the integral simplifies. Moreover,

γ̇ij = −2αKij + Ni|j + Nj|i = −32παγ−1/2

(

1

D − 2
Πγij − Πij

)

+ Ni|j + Nj|i. (19)

Therefore

HGR = −32π

∫

Πij

(

1

D − 2
Πγij − Πij

)

αγ−1/2 d3x + 2

∫

ΠijNi|j d3x − LGR

= −32π

∫
(

1

D − 2
Π2 − ΠijΠ

ij

)

αγ−1/2 d3x + 2

∫

ΠijNi|j d3x − LGR. (20)

To finish the Hamiltonian, we must express LGR in terms of conjugate momenta. Using Eq. (16), we have

−K2 + Ki
jK

j
i = − 256π2

(D − 2)2
γ−1Π2 + 256π2γ−1

(

1

D − 2
Πδi

j − Πi
j

) (

1

D − 2
Πδj

i − Πj
i

)

= 256π2γ−1

(

− 1

D − 2
Π2 + Πi

jΠ
j
i

)

. (21)
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This allows us to remove the extrinsic curvature terms in LGR. Moreover, we may use integration by parts to simplify
the shift term:

∫

ΠijNi|j d3x =

∫

Πijγ−1/2Ni|j γ1/2 d3x = −
∫

(Πijγ−1/2)|jNi γ1/2 d3x. (22)

This leads us to the final Hamiltonian:

HGR = 16π

∫
(

− 1

D − 2
Π2 + ΠijΠ

ij

)

αγ−1/2 d3x − 1

16π

∫

(D−1)R αγ1/2 d3x − 2

∫

(Πijγ−1/2)|jNi γ1/2 d3x. (23)

Remember that there may be an additional Hamiltonian term associated with the matter fields.

C. Secondary constraints

We have now built a Hamiltonian, and we have a set of coordinates and momenta {α, Ni, γij , Πα, [ΠN ]i, Πij}.
However, this does not completely solve our problem, because we do not yet know what parts of the phase space
are physically allowed. We already learned that there are the primary constraints that restrict the possible range of
conjugate momenta, Eq. (17). A further set of constraints – the secondary constraints – arise from requiring that the
primary constraints remain satisfied as the system evolves. To obtain these, one writes

Π̇α = −δH

δα
= 0 and [Π̇N ]i = − δH

δNi
= 0. (24)

Using Eq. (23), we see that these equations imply

16π

(

− 1

D − 2
Π2 + ΠijΠ

ij

)

γ−1/2 − 1

16π
(D−1)R γ1/2 +

δHmatter

δα
= 0 (25)

and

−2(Πijγ−1/2)|jγ
1/2 +

δHmatter

δNi
= 0. (26)

These are the secondary constraints. Note that they are constraints on the legal γij and Πij – i.e. on the spatial
geometry and extrinsic curvature. Thus if initial conditions are to be specified via {α, Ni, γij , Πα, [ΠN ]i, Πij}, they
are constraints on the initial conditions.

To understand these equations, we investigate the functional derivatives of the matter Hamiltonian with respect to
the lapse and shift. We haven’t written down the matter Hamiltonian, but we do recall the rule from Hamiltonian
mechanics that the partial derivative of a Hamiltonian is given by ∂H/∂q|p = −∂L/∂q|q̇. Therefore,

δHmatter

δgµν

∣

∣

∣

∣

Πα,[ΠN ]i,Πij

= − δLmatter

δgµν

∣

∣

∣

∣

ġ

= −1

2
T µν√−g. (27)

Recalling the form of the metric tensor, we see that since g00 = γijNiNj − α2 and g0i = Ni:

δHmatter

δα
= −2α

δHmatter

g00
= α

√−g T 00 = α2√γ T (dt, dt) =
√

γ T (n, n). (28)

Similarly, we find that

δHmatter

δNi
= 2

δHmatter

δg0i
+ 2γijNj

δHmatter

δg00

= −√−g
(

T 0i + N iT 00
)

= −α
√

γ
(

gijT 0
j + gi0T 0

0 + N iT 0
0g

00 + N iT 0
jg

0j
)

= −α
√

γ
[

γijT 0
j − α−2N iN jT 0

j + α−2N iT 0
0 − N iT 0

0α
−2 + N iT 0

jα
−2N j

]

= −α
√

γ γijT 0
j

=
√

γ γijT (n, ej). (29)
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Thus δHmatter/δα =
√

γ ρ and δHmatter/δNi =
√

γ J i, where ρ is the energy density measured by a normal observer

and J i is the (3-vector) momentum density seen by that observer.
We may now write Eqs. (25,26) directly in terms of the extrinsic curvatures: multiplying them by 8πγ−1/2, they

are

1

2

[

(D−1)R + K2 − Ki
jK

j
i

]

= 8πγ−1/2 δHmatter

δα
= 8πρ and K |i − Kij

|j = 8πγ−1/2 δHmatter

δNi
= 8πJ i. (30)

The left hand sides of these equations are G(n, n) and γikG(n, ek), respectively, according to the relations derived
in the previous lecture.

We thus conclude that the secondary constraints are 4 of the 10 components of Einstein’s equations.
We may further conclude by inspection that the Hamiltonian, at least of GR (this turns out to be true including

gauge-invariant matter fields as well), is linear in α and Ni; thus

H =

∫
(

α
δH

δα
+ Ni

δH

δNi

)

d3x. (31)

Thus the Hamiltonian vanishes if the constraints are satisfied. The actual value of the Hamiltonian for any

legal configuration of the Universe is zero.

One may then wonder if there are additional constraints beyond the secondary constraints. The answer turns out
to be no: if the secondary constraints are satisfied at the initial time, then it turns out that their derivatives are zero
by the equations of motion, and the constraints are satisfied at all times. (This is exactly true analytically – but may
not be true in a numerical code due to round-off errors or numerical integrators with finite step size. In particular,
the avoidance of growing constraint violations is a major challenge for numerical codes.)

IV. DYNAMICS

The Hamiltonian, Eq. (23), is most conveniently written as

HGR =

∫

α

[

16πGijklΠ
ijΠklγ−1/2 −

(D−1)R

16π

√
γ

]

d3x + 2

∫

ΠijNi|j d3x, (32)

where

Gijkl ≡ γi(kγl)j −
1

D − 2
γijγkl (33)

is a tensor symmetric under i ↔ j, k ↔ l, and ij ↔ kl.
From this, we may determine the time evolution of the spatial metric. Since under our assumptions the matter

Hamiltonian does not depend explicitly on Πij (or generally the derivatives of the metric):

γ̇ij =
δHGR

δΠij
= 32παGijklΠ

kl√γ + 2N(i|j) (34)

or

γ̇ij =
δHGR

δΠij
= 32πα

(

Πij −
1

D − 2
Πγij

)√
γ + Ni|j + Nj|i. (35)

This is the usual relation between the derivative of the spatial metric and the extrinsic curvature.
The evolution of the conjugate momentum is trickier. In general it is Π̇ij = −δH/δγij. There is a part associated

with the matter Hamiltonian. Since g00 = γklNkNl − α2, we see that

−δHmatter

δγij
= −δHmatter

δgij
+

δHmatter

δg00
γkiγjlNkNl =

1

2

(

T ij − T 00N iN j
)

α
√

γ. (36)

Now we define the 3-dimensional stress tensor to be the tensor S on Σt to be the restriction of the 4-dimensional
stress-energy tensor: Skl = Tkl. This object is invariant under changes of slices other than Σt, and its indices are
raised and lowered according to γij (note: Sij 6= T ij). Then

Sij = Tij = giµgjνT µν = NiNjT
00 + 2N(iγj)kT 0k + γikγjlT

kl. (37)
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Raising the indices on both sides with γij gives

Sij = T 00N iN j + 2N (iT j)0 + T ij. (38)

But from Eq. (29) we found that J i = α(T 0i + N iT 00). Thus

N (iJj) = α(N (iT j)0 + N iN jT 00). (39)

We thus conclude that

Sij = T 00N iN j + 2(α−1N (iJj) − N iN jT 00) + T ij = T ij − T 00N iN j + 2α−1N (iJj), (40)

and so Eq. (36) gives

−δHmatter

δγij
=

1

2

(

αSij − N iJj − N jJ i
)√

γ. (41)

We also need the derivatives of the GR Hamiltonian. Recalling that

δ

δγij

∫

(D−1)R
√

γ d3x = −(D−1)Gij√γ (42)

and keeping track of the numbers of derivatives, we can see that in general

δ

δγij

∫

α(D−1)R
√

γ d3x = −α(D−1)Gij√γ + (c1α
|ij + c2γ

ijγklα|kl)
√

γ (43)

for some c1, c2. One can find c1 and c2 by noting that for nearly Euclidean spaces in Cartesian coordinates with
γij = δij + hij we have (D−1)R = hik,jk − hij,kk; integration by parts in Eq. (43) to move the derivatives onto α gives
c1 = 1 and c2 = −1.

Remembering that ∂γ−1/2/∂γij = − 1
2γijγ−1/2, we see that

δ

δγij

∫

αGklmnΠklΠmn γ−1/2 d3x = α

[

2Πi
kΠkj − 2

D − 2
ΠΠij − 1

2
Πk

l Πl
kγij − 1

2(D − 2)
Π2γij

]

γ−1/2. (44)

Finally, the integral involving the shift depends on γij only indirectly through the Christoffel symbol on the covariant
derivative:

2
δ

δγij

∫

ΠklNk|l d
3x = −2

δ

δγij

∫

ΠklNm
(D−1)Γm

kl d3x

= − δ

δγij

∫

ΠklNmγmn(−γkl,n + γnk,l + γnl,k) d3x

= ΠklNmγm(iγj)n(−γkl,n + γnk,l + γnl,k) − (ΠijNmγmn),n + (ΠliNmγjm),l + (ΠljNmγim),l

= 2(D−1)Γ
(j
klN

i)Πkl − (ΠijNn),n + 2(Πl(iN j)),l

= 2(D−1)Γ
(j
klN

i)Πkl − (Πijγ−1/2Nn),nγ1/2 + 2(Πl(iN j)γ−1/2),lγ
1/2

−(D−1)Γk
knΠijNn + 2(D−1)Γk

klΠ
l(iN j).

= −γ1/2(N lΠijγ−1/2)|l + 2(N (jΠi)lγ−1/2)|lγ
1/2. (45)

Putting all the pieces together, we find that

Π̇ij = −16πα

[

2Πi
kΠkj − 2

D − 2
ΠΠij − 1

2
Πk

l Πl
kγij − 1

2(D − 2)
Π2γij

]

γ−1/2 − α

16π
(D−1)Gij√γ

+
1

16π
(α|ij − γijγklα|kl)

√
γ + γ1/2(N lΠijγ−1/2)|l − (N jΠilγ−1/2)|lγ

1/2 − (N iΠjlγ−1/2)|lγ
1/2

+
1

2

(

αSij − N iJj − N jJ i
)√

γ. (46)

Note that aside from the final factor of
√

γ, this is a tensor on Σt.
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We thus see how the spatial metric and its conjugate momentum (and hence the extrinsic curvature) evolve. We
also know that they must satisfy the initial value (secondary) constraints, Eq. (30). This leaves open the issue of the
evolution of α and Ni, whose conjugate momenta are zero. Of course, we want to write down a rule like

α̇ =
δH

δΠα
, (47)

but since Πα is identically zero, the functional derivative is undefined. Mathematically, the functional derivative can
be anything since we have not defined H for Πα 6= 0, and so we conclude that α̇ and Ṅi can be anything. This is
nothing but the gauge ambiguity of GR: the spatial slice Σt can be pushed forward and re-parameterized according
to any α and Ni functions that we choose.

More generally, this phenomenon is part of the behavior of Legendre transformations of an action principle when
many paths related by a gauge transformation have the same action. Remember that the conjugate momentum is the
derivative of the action with respect to final coordinates. The resulting primary constraint that some of the conjugate
momenta are always zero (due to gauge-equivalent configurations) allows us to choose when evolving the system which
of the many gauge-equivalent descriptions of the final state is explored by our numerical code.


