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I. OVERVIEW

Having covered the Lagrangian formulation of GR, our next goal is to build the conjugate momenta to gµν and
construct a Hamiltonian. Before we do, however, it is useful to consider the subject of slicing a 4-dimensional spacetime
into 3-dimensional slices of constant “time.” There are of course many such slices, and in numerical computations we
will ultimately have to choose one.

So our task for this lecture is to study the subject of surfaces embedded in spaces of one higher dimension.
Reading:

• MTW §§21.4–21.5.

II. SPLITTING THE METRIC TENSOR

We begin with the study of the following notations in D-dimensional spacetime (we care most about D = 4, but we
will occasionally make analogies to 2-surfaces in 3-dimensional space, so it is useful to keep D general). There is an
overall D-dimensional metric tensor gµν . If we choose a slicing of the spacetime into surfaces Σt, then clearly there is
a D− 1-dimensional metric on each surface whose components are simply the (D− 1)× (D− 1) submatrix of g. This
metric tensor will be denoted by γij . Thus gµν is partitioned:

gµν =

(

A Ni

Ni γij

)

, (1)

where A = gtt and Ni = git. There is a set of coordinate basis vectors, et and {ei}D−1
i=1 ; the ei are tangent to Σt,

while et is not tangent to Σt.

A. First fundamental form

The D − 1-dimensional metric γij on Σt is called the first fundamental form. It can be viewed as a symmetric,
linear operation at each point P ∈ Σt – that is, γ : TPΣt × TPΣt → R. (The name will distinguish it from the second
fundamental form, which we define later.)

It is conventional to raise and lower the indices of vectors, tensors, etc. defined on Σt with respect to the spatial
metric, i.e. the first fundamental form. This is valid so long as the surface is not null, i.e. so that γij is nonsingular.
Thus, γij is the (D − 1) × (D − 1) matrix inverse of γij . It does not need to be equal to gij , which is the inverse of
the D × D metric.

B. Shift

The specification of γij provides the (D−1)-dimensional geometry on each hypersurface, but A and Ni are required
in order to describe how these hypersurfaces are connected to each other. Note that

Ni = et · ei; (2)
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this is therefore a measure of how much the trajectory of a particle at constant spatial coordinates is non-orthogonal
to the surface Σt. If the curves of constant xi (which we term threads) are orthogonal to the slices of constant t, then
Ni = 0. We therefore call Ni the shift. The shift is actually a 1-form (linear mapping : TPΣt → R) on the space of
vectors tangent to Σt: it is defined by

Ñ(v) = et · v (3)

for v ∈ TPΣt.
One may introduce the contravariant shift, which is a vector tangent to Σt,

N i ≡ γijNj. (4)

C. Lapse

Next consider the forward-directed unit normal to the surfaces, n. This has square norm

s ≡ n · n; (5)

of course, for spacelike surfaces in Minkowski-signature spacetime as we are considering, s = −1, but if we were to
consider surfaces in Euclidean-signature space (which we will do as examples) we have s = +1. Since n is normal to
the surface, it follows that for v ∈ TPΣt (i.e. vt = 0) we have n · v = 0; therefore ni = 0 ∀i 6= t. We may thus write

nt = sα, (6)

where s was included to meet the forward-directed condition and

α = −et · n (7)

is called the lapse. (MTW denotes the lapse by N , which is common but dislikable since it can be confused with the
shift.)

We can understand the lapse better if we make some additional observations. First, we see that

sα−2 = α−2n · n = s dt · s dt = dt · dt = gtt, (8)

so the contravariant metric component gtt is related to the lapse. We may use this to raise the index on n:

nt = α−1. (9)

It follows that an observer moving orthogonal to the {Σt} – i.e. with 4-velocity n – sees a relation between coordinate
time and proper time of dt/dτ = α−1 or dτ/dt = α. The lapse is thus interpreted as the proper time per unit
coordinate time seen by an observer moving orthogonal to the slices. (In the Euclidean-signature case, we should
say this is the proper distance per unit coordinate distance – i.e. the proper spacing between slices divided by the
coordinate change ∆t.)

We still have not specified how the lapse relates to A, Ni, and γij . For this we need to construct the inverse
D-metric.

D. Inverse metric and line element

We will make frequent use of the inverse metric, which may be obtained by partitioning formula:

(

P Q

R S

)−1

=

(

(P − QS
−1

R)−1 −(P − QS
−1

R)−1QS
−1

−S−1R(P − QS
−1

R)−1 S−1 + S−1R(P− QS
−1

R)−1QS
−1

)

. (10)

(Try explicit multiplication.) Applying this to the partition of the covariant metric, Eq. (1), yields first the relation

sα−2 = gtt = (A − Niγ
ijNj)

−1 = (A − NiN
i)−1, (11)

or solving for A:

gtt = A = NiN
i + sα2. (12)
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This establishes the relation between the lapse and the time-time component of the metric. Note again that N i is
raised using the (D − 1)-dimensional metric γij .

The lower-left entry in Eq. (10) gives, recalling that gtt = (P − QS
−1

R)−1,

git = −γijgjtg
tt = −γijNjsα

−2 = −sα−2N j . (13)

Finally, the partition formula for the space-space components is

gij = γij + γikNksα−2Nlγ
lj = γij + sα−2N iN j . (14)

In conclusion, the metric and its inverse decompose as

gµν =

(

NiN
i + sα2 Ni

Ni γij

)

(15)

and

gµν =

(

sα−2 −sα−2N i

−sα−2N i γij + sα−2N iN j

)

. (16)

The line element form is

ds2 = sα2 dt2 + γij(dxi + N i dt)(dxj + N j dt). (17)

E. Commonly used vectors

In our investigation of “initial conditions,” the normal vector will play a more important role than et. This is
because once Σt is specified at a particular t = tinit, n as a geometric object is uniquely determined, whereas et is not
– thus we can describe initial conditions (e.g. the electromagnetic potential) in a basis that contains n rather than
et. Obtaining the relevant conversions between the two choices is thus critical.

Let us first consider n. We know its lower-index version nµ = (sα,0). The raised index version is then nµ =
(α−1,−α−1N i), and we thus see that

n =
1

α
(et − N iei). (18)

Of equal interest is the solution for et in terms of n and ei:

et = αn + N iei. (19)

This is the key equation providing a simple physical interpretation of the lapse and shift: they describe the evolution
of the coordinate system. To get from a point (t, xi) to (t + ∆t, xi), one moves a distance α∆t orthogonal to the
hypersurface Σt, and shifts parallel to the surface by a vector displacement N iei ∆t. If one goes to the point (t+∆t, xi)
and then drops a perpendicular to the surface Σt, the nearest point is not (t, xi) but (t, xi + N i∆t). Hence the name
“shift.”

There is an alternative statement of what the shift means, in the Minkowskian signature spacetime case (s = −1).
Consider two observers, one who moves along a thread (i.e. at fixed xi – the coordinate observer) and one who moves
normal to the hypersurfaces (the normal observer). Their 4-velocities are respectively (−gtt)

−1/2et and n. We may
find their relative velocity V by taking the dot product of the 4-velocities and setting it equal to the Lorentz factor
(1 − V 2)−1/2:

(1 − V 2)−1/2 = −(−gtt)
−1/2et · n = −(−gtt)

−1/2nt = −(α2 − NiN
i)−1/2(−α) =

(

1 − NiN
i

α2

)−1/2

, (20)

or

V =

√
NiN i

α
. (21)

Thus the relative velocity of these two observers is the ratio of the magnitude of the (D − 1)-dimensional shift vector
to the lapse. If the magnitude of the shift exceeds the lapse, then the coordinate grid (the labels x1, x2, x3) moves
faster than the speed of light, and the coordinate observer is no longer a legal observer. This is perfectly fine: the
coordinate grid is our own mathematical invention, and it can move however we choose!

Since the lapse and shift merely describe the evolution of the coordinate system, you might guess – correctly – that
in the time evolution formulations of GR, we are free to choose them for convenience.
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III. EXTRINSIC CURVATURE

Thus far we have discussed the intrinsic geometry of a 3-dimensional surface (γij) and the methods by which many
such surfaces are stitched together to make 4-dimensional spacetime. It is clear that this process, by defining all
components of the metric gµν(xα), completely specifies the spacetime geometry. However, when we specify initial
conditions, it will be on a particular surface Σt. How do we specify how Σt is embedded in the spacetime without
explicitly describing the neighboring slices and their spatial metrics? Or, if we consider a piece of paper in 3-
dimensional Euclidean space, how do we specify that the paper is bent into a cylinder instead of being truly flat?
This brings us to the subject of “extrinsic curvature,” a property of any D − 1-surface Σ in D-dimensional spacetime
M that exists without reference to other surfaces. The specification of the extrinsic curvature as initial data will take
the place of the specification of γ̇ij (which depends on the lapse and shift as well as on the choice of Σt).

The concept is most easily explained by considering a 2-dimensional surface in Eucliean 3-space R
3. Take a surface

tangent to the xy-plane at the origin; if it is smooth it may be Taylor-expanded as

z =
1

2
Kxxx2 + Kxyxy +

1

2
Kyyy

2 + ...; (22)

the components of the 2 × 2 symmetric matrix K describe how the surface is curved with respect to the manifold in
which it is embedded. It is this concept that we wish to generalize to any surface. We see that if we move in e.g. the
x-direction, then the surface normal tilts in the x or y directions depending on Kxx and Kxy respectively. This forms
the basis of the general definition.

A. Definition and immediate implications

We define the extrinsic curvature of a D− 1-surface Σt ⊂ M at a point P ∈ Σt as the mapping K : TPΣt → TPM,

K(v) = −∇vn. (23)

Here ∇v is the usual D-dimensional covariant derivative. Note that since v ∈ TPΣt, we do not care what the value
of n anywhere except on Σt: thus this definition depends only on Σt and not on the lapse and shift. Moreover, we
see that

n ·K(v) = −n · ∇vn = −1

2
∇v(n · n) = 0. (24)

Therefore, K(v) is tangent to Σt and we learn that K is actually a mapping from TPΣt to itself. It is thus a
(D − 1) × (D − 1) matrix, with components Ki

j . It is called the extrinsic curvature or second fundamental form.
Note that K flips sign if we flip the direction of n.
At first glance, it would appear that all of the entries of K are independent. This is not so: if we take two vectors

u, v ∈ TPΣt, we see that

u ·K(v) − v ·K(u) = −uαvβnα;β + vαuβnα;β

= 2vαuβn[α;β]

= 2vαuβn[α,β] = 0 (25)

since vt = ut = 0 and ni = 0. We thus see that u · K(v) = uiγikKk
jv

j is symmetric in u and v, or equivalently Kij

(indices lowered by γij) is symmetric. Thus K is a symmetric form.
Note that while the first fundamental form γij was a property of only Σt without reference to M, the second

fundamental form uses the embedding in an essential way. Thus a 3-sphere as its own geometric entity has a first
fundamental form but not a second, while if it is embedded in 4-dimensional spacetime (e.g. a closed FRW universe),
it has both.

A corollary to Eq. (23) is that the extrinsic curvature describes the apparent relative velocities of neighboring
normal observers. In particular, if O and P are infinitesimally displaced from each other by the vector ξ pointing
from O to P (this construction only makes sense for infinitesimal separations) then the apparent velocity of the normal
observer at P relative to that at O is −K(ξ). In the special case of an FRW universe, where this velocity is Hξ, we
must have an extrinsic curvature of Kij = −Hγij. Thus the extrinsic curvature provides a measure of the rate of
contraction of observers moving normal to the surface, with its trace giving a measure of “−3H” (the Hubble rate)
and its anisotropic part measuring anisotropic expansion/contraction. There is no antisymmetric or rotational part:
the requirement of being hypersurface-orthogonal forbids our observers from having any vorticity.
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B. Relation to the metric

So much for defining the extrinsic curvature: we must now determine how it relates to the “time rate of change of
the metric” γ̇ij (which we expect to appear in any time evolution version of Einstein’s equations).

All we have to do is evaluate Eq. (23). This gives

Kij = −∇jni = −ni,j + Γk
ijnk, (26)

where we use Γ to denote D-dimensional Christoffel symbols. Since only nt is nonvanishing and has nt = sα, we find

Kij = sαΓt
ij

=
1

2
sαgtµ(−gij,µ + giµ,j + gjµ,i)

=
1

2
sα

[

(sα−2)(−γ̇ij + Ni,j + Nj,i) + (−sα−2Nk)(−γij,k + γik,j + γjk,i)
]

. (27)

The solution for γ̇ij is

γ̇ij = −2αKij + Ni,j + Nj,i + Nk(−γij,k + γik,j + γjk,i). (28)

Noting that Nk = γklNl, we can collect the last term into a D− 1-dimensional Christoffel symbol: it is 2 (D−1)Γl
ijNl.

If we therefore introduce the use of the vertical bar | to denote covariant derivatives on Σt using the spatial metric,
we reduce this to

γ̇ij = −2αKij + Ni|j + Nj|i. (29)

This is the time evolution equation for γij – provided that we can determine Kij . To close the time evolution

formalism, we will need to find K̇ij . This is most easily done through Hamiltonian means, since it will turn out that
the components of Kij are closely related to the canonical conjugates of γij .

At a more general level, Eq. (29) gives us another concept of what extrinsic curvature is. Suppose we take a surface
with some metric γij , and then make a “sandwich” between it and another surface a distance ǫ away from it (i.e.
take the unit normal at each point and travel a distance ǫ in that direction; then use the new points to define a new
surface). We see that the new surface has metric γij − 2ǫKij.

IV. GAUSS-CODAZZI RELATIONS

If you have ever bent a piece of paper initially in the xy-plane, you know that it is easy to bend it in the x-direction,
or the y-direction, but not both simultaneously. This trivial geometric realization is embodied in a set of beautiful
relations between the various curvature tensors we have encountered: those associated with the D − 1-dimensional
surface Σt, those associated with the overall spacetime, and the extrinsic curvature. These relations also play a
central role in defining legal initial conditions in GR. We now examine them. We denote the Riemann tensor on the
hypersurface by (D−1)Rijkl, as opposed to those in the spacetime, which are Rαβγδ.

A. Derivation

Our approach will be to take the surface Σt and build Gaussian normal coordinates – a coordinate system formed
by taking α = 1 and Ni = 0 everywhere. [Such a system always exists: one merely takes each spatial position xi

on Σt, builds the geodesic orthogonal to Σt, and takes these as the threads; and chooses the proper time as the
coordinate – see MTW Exercise 27.2.] At the end of the calculation we will write our expressions such that they are
coordinate-independent, and thus valid in any system.

In the Gaussian normal system, we see that the Christoffel symbols take on a special form. We immediately see
that

Γt
ij = sKij and Γi

jk = (D−1)Γi
jk; (30)

see Eq. (27) for the first relation, and in the second relation t plays no role. Furthermore,

Γi
tj =

1

2
γikγ̇kj = −γikKkj = Ki

j . (31)
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All Christoffel symbols with 2 or 3 ts vanish.
Now using the general rule for the Riemann tensor,

Rα
βγδ = Γα

βδ,γ − Γα
βγ,δ + Γα

µγΓµ
βδ − Γα

µδΓ
µ
βγ , (32)

we may consider the components of the D-dimensional Riemann tensor. For the purely spatial terms, this gives

Ri
jkl = (D−1)Γi

jl,k − (D−1)Γi
jk,l + (D−1)Γi

mk
(D−1)Γm

jl − sKi
kKjl − (D−1)Γi

ml
(D−1)Γm

jk + sKi
l Kjk

= (D−1)Ri
jkl + s(Ki

l Kjk − Ki
kKjl). (33)

Lowering an index (which, in Gaussian normal coordinates, is the same according to either γij or gij) gives the relation

Rijkl = (D−1)Rijkl + s(KilKjk − KikKjl). (34)

Since Rijkl = R(ei, ej , ek, el) does not depend on the choice of e0 (and hence the lapse and shift), Eq. (34) applies to
a general coordinate system. It is the first Gauss-Codazzi relation.

A second such relation can be obtained by considering the t component in Gaussian normal coordinates:

Rt
ijk = sKik,j − sKij,k + sKlj

(D−1)Γl
ik − sKlk

(D−1)Γl
ij

= s(Kik,j − Kij,k + Klj
(D−1)Γl

ik − Klk
(D−1)Γl

ij)

= s(Kik|j − Kij|k). (35)

In Gaussian normal coordinates, nµ = (s,0) so this is equal to snµRµ
ijk. We may thus write the following relation,

which is coordinate-independent:

nµRµ
ijk = Kik|j − Kij|k. (36)

This is the second Gauss-Codazzi relation.

B. Relation to the Einstein tensor

Four of the ten components of the Einstein tensor can be extracted from the Gauss-Codazzi relations. This can be
shown directly, but it is easiest to specialize to Gaussian normal coordinates and then to a system where the spatial
coordinates are re-labeled so as to be locally Euclidean at some point P , prove the appropriate relations, and then
transform back to general coordinates. In the intermediate case, we have not only α = 0 and Ni = 0 but also γij = δij

at P itself.
First up is the time-time component. We see that

Gtt = Rtt −
1

2
sR

= Rtt −
1

2
s(sRtt + Rii)

=
1

2
Rtt −

1

2
sRii

=
1

2
Rtiti −

1

2
sRijij −

1

2
Ritit

= −1

2
sRijij

= −1

2
s
[

(D−1)Rijij + s(KijKji − KiiKjj)
]

= −1

2

[

s (D−1)R + Kj
i Ki

j − Ki
iK

j
j

]

. (37)

The left-hand side is the coordinate-independent object G(n, n), and the right-hand side is manifestly coordinate-
independent (so long as we fix Σt), so we conclude that

G(n, n) = −1

2

[

s (D−1)R + Kj
i Ki

j − K2
]

, (38)
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where K ≡ Ki
i is the D − 1-trace of the extrinsic curvature. Thus the normal component of the Einstein equation,

which we will equate to 8π times the energy density seen by a normal observer, is related to the D − 1-dimensional
Ricci scalar of the surface and its extrinsic curvature.

Next let’s look at the time-space components. These are, in the specialized coordinate system,

Gti = Rti = Rtjij = sRt
jij = Kjj|i − Kij|j . (39)

We thus conclude that in general coordinates:

G(n, ei) = K|i − Ki
j
|j. (40)

C. Space-space parts of Einstein tensor

The space-space parts of the Einstein tensor do not have any such simple relation. To see this, consider, in Gaussian
normal coordinates:

Gi
j = Ri

j −
1

2
Rδi

j

= Ri
j −

1

2
Rk

kδi
j −

1

2
sRttδ

i
j

= Rti
tj + Rki

kj −
1

2
Rtk

tkδi
j −

1

2
Rmk

mkδi
j −

1

2
sRkt

ktδ
i
j

= Rti
tj + Rki

kj − Rtk
tkδi

j −
1

2
Rmk

mkδi
j

= Rti
tj + (D−1)Rki

kj + s(Kk
j Ki

k − Kk
kKi

j) − Rtk
tkδi

j −
1

2
[ (D−1)Rmk

mk + s(Km
k Kk

m − Km
mKk

k )]δi
j

= Rti
tj − Rtk

tkδi
j + (D−1)Gi

j + s(Ki
kKk

j − KKi
j) −

1

2
s(Kk

l K l
k − K2)δi

j . (41)

The problem is the appearance of the Riemann tensor component with two time indices, Rti
tj . This depends not

just on the spatial metric and the extrinsic curvature, but on the geometry of spacetime off of the “sandwich” of a
hypersurface and its immediate neighbor. In Gaussian normal coordinates,

Rt
itj = sK̇ij − sKkjK

k
i , (42)

so we have the simplified form obtained by lowering indices on Eq. (41),

Gij = s(K̇ij − γklK̇klγij − KkjK
k
i + KklK

klγij) + (D−1)Gij + s(KikKk
j − KKij) −

1

2
s(Kk

l K l
k − K2)γij , (43)

which simplifies to

Gij = s(K̇ij − γklK̇klγij +
1

2
KklK

klγij + KKij −
1

2
K2γij) + (D−1)Gij . (44)

The appearance of K̇ij is troublesome because it transforms in a complicated way back to a general coordinate system.
It has a particular interpretation – it is − 1

2 times the second derivative of the spatial metric with respect to proper
distance if one extends the sandwich construction to a sequence of hypersurfaces – but this is not especially useful. We
will therefore not make use of the space-space part of the Einstein tensor in developing the time evolution formulation:
rather we will use Hamiltonian methods, which will give us the evolution equations for Kij directly.

D. Some simple applications

We conclude by considering some simple applications of the Gauss-Codazzi relations.
First, we consider the problem of the intrinsic curvature of a 2-dimensional surface in 3-dimensional Euclidean

signature space. The 2-dimensional Riemann tensor (2)Rijkl is entirely determined by the Ricci scalar (2)R and the

metric γij (the Riemann tensor has only 1 nontrivial component, (2)R1212). We further suppose that the extrinsic
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curvature Kij , being a symmetric 2×2 tensor, has eigenvalues λ1 and λ2 (the “principal curvatures”) in an orthonormal
basis. Then the Gauss-Codazzi relation says

G(n, n) = −1

2

[

(2)R + λ2
1 + λ2

2 − (λ1 + λ2)
2
]

= −1

2
(2)R + λ1λ2. (45)

We thus see that if the 3-dimensional space is flat, then G(n, n) = 0 and (2)R = 2λ1λ2. That is, a 2-surface in
Euclidean R

3 has positive curvature if the two principal curvatures λ1 and λ2 have the same sign (i.e. the surface
curves in the same direction on both axes, like a sphere); it has negative curvature if λ1 and λ2 have opposite sign
(i.e. the surface curves downward on one axis and upward on the other, like a saddle); and zero curvature if one of the
principal curvatures is zero (like a cylinder; if both are zero, then the surface has no extrinsic curvature whatsoever).
This is the reason why an initially flat piece of paper in Euclidean space can be bent into a cylinder along any axis,
but cannot be bent into a ball or a saddle without crumpling or tearing.

The opposite situation occurs if we were to put that flat piece of paper in S3, where G(n, n) = −1 for any unit
vector n. In this case, for the piece of paper to be flat, we need λ1λ2 = −1, i.e. it would have to have saddle-like
extrinsic curvature!

A second example concerns spacetimes with time-reversal symmetry, e.g. a closed FRW universe at the epoch of
greatest expansion. If we take the surface Σ of symmetry, then its extrinsic curvature must vanish, and we have

8πρ = G(n, n) =
1

2
(3)R. (46)

Thus, any spacetime with such a time-reversal symmetry must have spatial curvature if it is nonempty, and such
curvature is given by (3)R = 16πρ. If the energy density is non-negative, we must have non-negative (3)R at all points
on the surface of symmetry.

A third example concerns the subject of extremal surfaces, D − 1-dimensional surfaces Σ whose D − 1-volume
is stationary with respect to small displacements of the surface (think of the surface of a soap film attached to a
boundary). It is straightforward to show that the variation of the surface volume if the surface is perturbed by a
distance wn is

δ (D−1)V = −
∫

wK
√−γ dD−1x, (47)

and hence the extremal surfaces are those for which the trace of the extrinsic curvature vanishes, K = 0. If such
surfaces are embedded in Euclidean space, then we find the relations

(D−1)R = −Ki
jK

j
i and Kij

|j = 0. (48)

Thus the extrinsic curvature is a divergenceless tensor on any extremal surface on a flat background.


