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I. OVERVIEW

We now turn our attention to the canonical (Lagrangian and Hamiltonian) formulations of GR, and will use the
subject of cosmological perturbations as the principal application. We begin with a study of the Einstein-Hilbert
action, and then proceed to consider the more complex issue of the Hamiltonian formulation. The full Hamiltonian
of GR will be constructed in the next lecture. The Hamiltonian will then be used to describe the possible initial
conditions in GR and the time evolution of spacetimes.

Reading:

• MTW §§21.1–21.3.

II. THE LAGRANGIAN OF GENERAL RELATIVITY

The first step in a canonical treatment of GR is to construct an action that yields Einstein’s equations as the
Euler-Lagrange equations. In order to do this, we need both an equation for the action and a set of variables that
can be varied. In our case, the set of variables will be the fields gµν(xα). We may specify either the covariant or
contravariant metric; often you will see gµν written, but of course these contain the same information.

The derivation of the action from a set of equations of motion is very hard, not always possible, and there is no
systematic way to do it. We therefore will begin by guessing the action and showing that it gives the right answer.
We want our choice to be gauge invariant and “local” in the sense that it will lend itself to being the integral of a
Lagrangian; that is, we will guess something like

S =

∫

L d(4)V, (1)

where L is a scalar Lagrange density and d(4)V is the element of 4-volume. We thus need both a scalar and the
4-volume element.

A. Setup

The 4-volume element is easiest: we recall that in a locally Minkowskian coordinate system {xα′}3
α′=0, the volume

element is d(4)V = dx0′

dx1′

dx2′

dx3′

. If there is a positive-determinant (i.e. conserving the handedness of the

Jacobian) Jacobian Jα′

β = ∂xα′

/∂xβ that transforms this to a general coordinate system {xβ}3
β=0, we have

d(4)V = dx0′

dx1′

dx2′

dx3′

= (det Jα′

β) dx0 dx1 dx2 dx3 ≡ (det Jα′

β) d4x. (2)

It turns out however that the metric tensor in the general coordinate system is

gγδ = Jα′

γJβ′

δηα′β′ , (3)

or in matrix language g = JTηJ. If we define g to be the determinant of the 4×4 matrix g, we then have g = −(detJ)2,
so it follows that detJ =

√−g. We thus see that the 4-volume element is

d(4)V =
√−g d4x. (4)
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Not so straightforward is guessing the scalar Lagrange density L. In general this has both terms associated with
GR and with the matter:

L = LGR + Lmatter, (5)

with Lmatter = 0 for the vacuum. In terms of finding the Euler-Lagrange equations, we can then take the functional
derivative

δS

δgµν
=

δSGR

δgµν
+

δSmatter

δgµν
= 0. (6)

This suggests that we are on the right track: the first term in this equation contains only geometry, the second term
contains matter, and they are equal (aside from a sign).

A technical aside: We define L only for symmetric gµν since this is the only case that makes sense. Therefore
only the symmetric part of δS/δgµν is defined, with the antisymmetric part undetermined. We will simply set the
antisymmetric part to be equal to zero. This is equivalent to formally defining S for general gµν in such a way
that S[gµν ] = S[gνµ]; if we do so then variations of the action with respect to the antisymmetric part of the metric
automatically vanish when the derivative is taken at symmetric gµν .

B. The GR terms

Our goal here is to guess the GR piece, which should be a property of only the spacetime. The simplest scalar that
we could write down is of course a constant, but this can’t be right since a Lagrangian that (in vacuum) depends only
on gµν and not on any derivatives cannot have interesting dynamics. (In fact, if we write down LGR = k2 6= 0 then
there are no solutions to the Euler-Lagrange equations at all!) We therefore try the next simplest option:

LGR = k1R + k2, (7)

where R is the Ricci scalar, and k1 and k2 are constants. This will turn out to be the right answer. We see that:

δSGR

δgµν
= k1

δ

δgµν

∫

R
√−g d4x + k2

δ

δgµν

∫ √−g d4x. (8)

There are two functional derivatives in Eq. (8). The second one is straightforward: since the integral contains no
derivatives of gµν , we see that

δ

δgµν

∫ √
−g d4x =

∂

∂gµν

√
−g. (9)

We now recall the general rule of derivatives of matrix determinants,

∂ detA

∂Aij
= (detA)[A−1]ji. (10)

(Recall the expansion of the determinant across the ith row and Cramer’s rule.) Using this, we simplify the partial
derivative to

δ

δgµν

∫ √
−g d4x =

∂

∂gµν

√
−g =

−1

2
√−g

(g) gνµ =
1

2
gµν√−g. (11)

This is a tensor multiplied by
√−g, which is required by general covariance: remember that what Eq. (11) is saying

is that the general variation of the integral is

δ

∫ √−g d4x =

∫
(

1

2
gµν

)

δgµν

√−g d4x. (12)

Clearly the object in parentheses needs to be a tensor.
The determination of the first functional derivative in Eq. (8) by brute force is much harder given the messy

dependence of R on gµν . We know however that it will be of the form

δ

δgµν

∫

R
√
−g d4x = Hµν√−g (13)
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for some symmetric tensor Hµν . Much effort can be saved by examining the properties of this tensor.
First, we see that R depends on the metric components gµν , their derivatives gµν,α, and their second derivatives

gµν,αβ . Furthermore every term contains exactly 2 derivatives: it may be linear in the second derivative with no
dependence on the first derivative, or quadratic in the first derivative with no dependence on the second derivative.
It follows that the same is true of R

√−g. Therefore the functional derivative in Eq. (13) is of the form

δ

δgµν

∫

Uαβγδǫζ [gµν ]gαβ,γgδǫ,ζ d4x +
δ

δgµν

∫

Vαβγδ[gµν ]gγδ,αβ d4x, (14)

where U and V are functions. If we integrate by parts on the V term, then the ∂β derivative moves onto V and gives
us a term that is quadratic in the first derivatives of gµν with no second derivatives. Thus, integration by parts allows
us to eliminate terms of the V type and leave us with only terms of the U type. We may further symmetrize U under
the interchange of αβγ ↔ δǫζ indices. Putting in the coordinate labels and integrating by parts gives

δ

δgµν(yσ)

∫

R
√−g d4x =

δ

δgµν(yσ)

∫

Uαβγδǫζ [gµν(xσ)]gαβ,γ(xσ)gδǫ,ζ(x
σ) d4x

=

∫

δUαβγδǫζ [gµν(xσ)]

δgµν(yσ)
gαβ,γ(xσ)gδǫ,ζ(x

σ) d4x

+2

∫

Uαβγδǫζ [gµν(xσ)]
δgαβ,γ(xσ)

δgµν(yσ)
gδǫ,ζ(x

σ) d4x

=

∫

δUαβγδǫζ [gµν(xσ)]

δgµν(yσ)
gαβ,γ(xσ)gδǫ,ζ(x

σ) d4x

−2

∫

∂

∂xγ

[

Uαβγδǫζ [gµν(xσ)]gδǫ,ζ(x
σ)

] δgαβ(xσ)

δgµν(yσ)
d4x

=
∂Uαβγδǫζ

∂gµν
gαβ,γgδǫ,ζ(y

σ) − 2
∂

∂xγ

[

Uµνγδǫζgδǫ,ζ(x
σ)

]

(yσ). (15)

We thus see that Hµν also depends on the metric components gµν , their derivatives gµν,α, and their second derivatives
gµν,αβ . Furthermore every term contains exactly 2 derivatives: it may be linear in the second derivative with no
dependence on the first derivative, or quadratic in the first derivative with no dependence on the second derivative.

This remarkable result heavily restricts the possible forms of Hµν . Since we may go to a local Lorentz frame and
choose Riemann normal coordinates in which the metric derivatives vanish and the second derivatives of the metric
are determined by the Riemann tensor, it follows that Hµν is constructed entirely from the metric and Riemann
tensors. Further, the requirement of being at most linear in the second derivative implies that the Riemann tensor
occurs at most to linear order: we thus have

Hµν = c1R
µν + c2Rgµν , (16)

where c1, c2 are constants. (The need for exactly 2 derivatives eliminates a possible c3g
µν term.) Obtaining this form

is remarkably constraining!
But we can do even better. Note that the action

∫

R
√−g d4x is invariant under gauge transformations that leave

the boundary fixed, i.e. if we impose a gauge transformation given by vector field ξ, it follows that the action remains
invariant under the metric perturbation δgµν = 2ξ(µ;ν). Therefore we see that

2

∫

Hµνξ(µ;ν)

√−g d4x = 0. (17)

We may of course drop the 2. Noting that Hµν is symmetric so we can drop the parentheses, and then performing
integration by parts, we see that

∫

(Hµνξµ);ν
√
−g d4x −

∫

Hµν
;νξµ

√
−g d4x = 0. (18)

The first term here vanishes: it is a surface integral by Stokes’s theorem. If you don’t like this kind of argument,
recall that for any vector vν we have

vν
;ν

√−g = vν
,ν

√−g + Γν
νβvβ √−g = vν

,ν

√−g + (∂β ln
√−g)vβ √−g = (vν √−g),ν , (19)
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so one can directly see this is a total derivative. Therefore since this is true for general ξ we must have Hµν
;ν = 0.

This only works for general metrics if c2 = − 1
2c1 (recall the Bianchi identity, which tells us that Gµν

;ν = 0 but that
this does not hold for other linear combinations of Rµν + bRgµν). Thus from Eq. (16) we see that

Hµν = c1G
µν . (20)

The appearance of Gµν is promising if we are going to eventually try to recover Einstein’s equations. But note the
reason why it appeared: it was a consequence of gauge invariance! This contrasts with the approach from 1st term
where it was required by local conservation of energy-momentum T µν

ν = 0. The two are of course closely related,
since the local conservation of energy-momentum is the “conservation law” associated with the symmetry of gauge
transformations.

To complete our job, we must find the numerical value of c1. This can be done with a specific example (any

nontrivial example will do). Consider the 4-dimensional manifold S2 × T 2, where the sphere has radius 1 and the
torus is compactified with length ℓ in one direction and length 1 in the other. That is, we take the range 0 ≤ t < 1,
0 ≤ z < 1, and use a standard Minkowskian-signature metric:

ds2 = dθ2 + sin2 θ dφ2 + ℓ2 dz2 − dt2. (21)

Then the Riemann tensor has Rθφθφ = 1 and the other components (not trivially related to Rθφθφ via index permu-
tations) vanish. We have R = 2 and total volume 4πℓ, and so

∫

R
√−g d4x = (2)(4πℓ) = 8πℓ. (22)

Thus δ
∫

R
√−g d4x = 8π δℓ. This must be compared with, from Eq. (13),

8π δℓ =

∫

Hµνδgµν

√−g d4x = c1

∫

Gµνδgµν

√−g d4x. (23)

Since δgzz = δ(ℓ2) = 2ℓ δℓ and the other components of δgµν vanish, it follows that:

8π δℓ = 2c1ℓ δℓ

∫

Gzz√−g d4x. (24)

Now inspection shows that Rzz = 0 (no Riemann tensor component containing z can be nonvanishing since no metric
components containing z are nonconstant and no components depend on z), so we have

Gzz = −1

2
Rgzz = −1

2
(2)(ℓ−2) = −ℓ−2. (25)

Multiplying by the volume then gives

8π δℓ = 2c1ℓ δℓ (−L−2)(4πℓ) = −8πc1 δℓ (26)

and hence c1 = −1. Putting this all together gives Hµν = −Gµν and hence

δSGR

δgµν
=

(

−k1G
µν +

1

2
k2g

µν

) √−g. (27)

The vacuum Einstein equation Gµν = 0 is recovered if k2 = 0; so you can probably guess that k2 is going to be
related to the cosmological constant. We will return to this issue after we determine the value of k1.

III. THE MATTER TERMS

In order to complete our investigation of the Lagrangian formulation of GR, we must turn next to the matter terms:
what is δSmatter/δgµν? Clearly we want it to be somehow related to the stress-energy tensor, but we need to find
(i) the correct coefficient and (ii) show that this identification is correct. To do both of these, we first consider a
particular case – that of a swarm of particles – and show that its stress-energy tensor agrees with δSmatter/δgµν times
− 1

2 . We then show that δSmatter/δgµν also agrees with the canonical definition of energy.
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A. The swarm of particles

Consider a system with a suite of particles {A} each of mass µA following some set of trajectories xµ(σ|A) where
A is a particle index and σ is a coordinate on the world line. The action for such particles is

S = −
∑

A

µA

∫

dτ = −
∑

A

µA

∫

√

−gµν
dxµ

dσ

dxν

dσ
dσ. (28)

The variation of S is

δS = −
∑

A

µA

∫ −1

2
√

−gµν
dxµ

dσ
dxν

dσ

dxµ

dσ

dxν

dσ
δgµν dσ

=
1

2

∑

A

µA

∫

1

dτ/dσ

dxµ

dτ

dxν

dτ

(

dτ

dσ

)2

δgµν dσ

=
1

2

∑

A

µA

∫

uµuνδgµν dτ. (29)

Therefore the functional derivative is

δSmatter

δgµν(yα)
=

1

2

∑

A

µA

∫

uµuνδ(4)[yα − xα(τ |A)] dτ. (30)

The right-hand side is 1
2 of the stress-energy tensor at yα, aside from a missing factor of

√−g since the coordinate

delta function appears here but the physical volume delta function (−g)−1/2δ(4)[yα − xα(τ |A)] appears in T µν . We
thus learn that

δSmatter

δgµν(yα)
=

1

2
T µν(yα)

√−g. (31)

This is often taken as the relativistic definition of the stress-energy tensor.
You might object that I didn’t prove Eq. (31) for general matter fields. This is a good objection. All I have done

is prove a particular case (and you should be able to show easily that the gauge invariance of the matter action
implies that the relativistic stress-energy is divergence-free, T µν

;ν = 0). A more fundamental objection is that we
never defined e.g. the “energy density” in this class, so it is hard to prove that the energy density equals something.
I won’t completely solve this problem now, except to prove that the relativistic stress-energy tensor agrees with the
canonical notion of energy density you learned in undergraduate physics.

B. Canonical definition of energy

We now investigate the canonical definition of energy of some system of particles, fields, etc. in an enclosed box of
3-volume V in Minkowski space and in the rest frame of the box. If you don’t like closed boxes, then you may think
of this exercise with periodic boundary conditions in the spatial dimensions so as to achieve some total 3-volume V .
We will work in the usual Minkowski coordinates. Our job is to prove that the integral

E(t) ≡ 2

∫

δSmatter

δg00
d3x (32)

obtained as the integral of the relativistic energy density is in fact the usual notion of “energy” from classical mechanics.
Since this integral is on a 3-surface of constant t, we see that the computation of E depends on t, although the
conservation of relativistic stress-energy shows that it is actually constant.

To do this, let’s imagine that the system has some set of N degrees of freedom {qA}N
A=1 and a Lagrangian L(qA, q̇A).

If the system contains electromagnetic fields etc. then maybe N = ∞ but we are physicists and that doesn’t bother
us. We can then see that the action, measured from time t0 to time t2, is

Smatter =

∫ t2

t0

L(qA, q̇A) dt. (33)
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Now let’s imagine that between some time t1 and t1 + ∆t, we change the time-time part of the metric tensor so that
instead of g00 = −1 we have g00 = −1 + ǫ (at all spatial coordinates), with |ǫ| ≪ 1 and ∆t small compared to the
shortest dynamical timescale of the system. It follows that the change of the action is

δS = ǫ ∆t

∫

δSmatter

δg00
d3x

∣

∣

∣

∣

t1

=
1

2
ǫ ∆t E(t1). (34)

We may alternatively compute the action by noting that between t1 and t1 +∆t, the time coordinate is stretched by a
factor of 1− 1

2ǫ, so that during this interval the proper time experienced by the system is only (1− 1
2ǫ)∆t. Moreover,

the time derivatives q̇A are sped up by a factor of 1 + 1
2ǫ. Then the matter action changes by

δSmatter =

∫ t1+∆t

t1

L

(

qA,

(

1 +
1

2
ǫ

)

q̇A

) (

1 − 1

2
ǫ

)

dt −
∫ t1+∆t

t1

L(qA, q̇A) dt

= ∆t

(

1

2
ǫ

∂L

∂q̇A
q̇A − 1

2
ǫL

)∣

∣

∣

∣

t1

=
1

2
ǫ ∆t

(

∂L

∂q̇A
q̇A − L

)∣

∣

∣

∣

t1

. (35)

Comparison to Eq. (34) shows that

E(t1) =

(

∂L

∂q̇A
q̇A − L

)
∣

∣

∣

∣

t1

. (36)

Thus E is the Hamiltonian, i.e. the usual definition of the energy.
A good exercise (slightly harder) is to do the same proof for the total momentum rather than the energy.

IV. THE FULL ACTION

We are now ready to write down the field equation for GR: it is δS/δgµν = 0 where S is the total action (GR +
matter). This gives us

−k1G
µν +

1

2
k2g

µν +
1

2
T µν = 0, (37)

or – solving for 8πT µν – we find

16πk1G
µν − 8πk2g

µν = 8πT µν . (38)

We thus make the identification that k1 = 1/(16π). Actually it is 1/(16πG): the choice of k1 is equivalent to
determining the coupling constant of gravity. As k1 → ∞ (i.e. it takes infinite energy to bend spacetime), gravity is
turned off (G → 0). This is exactly analogous to the problem in quantum field theory of setting the kinetic term of
a particle to infinity: it effectively becomes noninteracting if you switch to the canonical normalization of the kinetic
term. In exactly the same sense,

∫

R
√−g d4x is the “kinetic energy” term for gravity.

We further see that 8πk2 = Λ: this term in the action is the cosmological constant. We thus have the GR part of
the action:

SGR =

∫
(

R

16π
+

Λ

8π

) √−g d4x. (39)

The first term here is the original Einstein-Hilbert action. The cosmological constant appears here as an additional
term in the action associated with not the curvature but the volume of spacetime: it is for this reason that such a
term is expected to arise from zero-point fluctuations.


