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I. OVERVIEW

In this section, we will consider the evolution of the matter content of the Universe, and consider the classical tests
of cosmology. That is, we will examine the methods of establishing cosmic distances and times, and their dependence
on the cosmological parameters.

We won’t cover the issue of cosmological perturbations and the tests based on them (e.g. CMB anisotropies, large
scale structure) yet.

Reading:

• MTW Ch. 28.

II. LIGHT RAYS AND CONFORMAL TIME

We return to the FRW metric:

ds2 = −dt2 + a2(t)[dχ2 + D2(χ) (dθ2 + sin2 θ dφ2)], (1)

where the distance function is

D(χ) =







χ K = 0
K−1/2 sin(K1/2χ) K > 0
(−K)−1/2 sinh[(−K)1/2χ] K < 0

. (2)

In order to determine the trajectories of light rays (a common problem, both observationally and in terms of under-
standing causal structure), we will introduce the conformal time η

η =

∫

dt

a
, (3)

so that

ds2 = a2(η)[−dη2 + dχ2 + D2(χ) (dθ2 + sin2 θ dφ2)]. (4)

Like the cosmic time t, the conformal time η has no independently defined zeropoint: we choose the integration
constant in Eq. (3) based on convenience.

The propagation of light rays in the metric of Eq. (4) is easy to understand. We recall that if λ is the affine
parameter for a photon,

dpα

dλ
=

d(gαβpβ)

dλ
= gαβ

dpβ

dλ
+ gαβ,γ

dxγ

dλ
pβ = −gαβΓβ

γδp
γpδ + gαβ,γpγpβ =

1

2
gγδ,αpγpδ, (5)

where in the last equality we expanded the Christoffel symbol. Now in the case of Eq. (4), we have the special
circumstance that

∂gµν

∂η
= 2

d ln a

dη
gµν . (6)
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It follows that for any null curve,

∂gµν

∂η
pµpν = 0, (7)

and so Eq. (5) then informs us that dpη/dλ = 0. Thus we conclude that in FRW cosmology, pη is conserved.
Equivalently, if we go back to the tχθφ coordinates, we have

pt =
pη

a
∝ 1

a
. (8)

Since the energy of a photon measured by a comoving observer is −pt, we conclude that as the Universe expands, the
energy of a photon measured in what happens to be the local comoving frame decreases as E ∝ 1/a. This phenomenon
is known as the cosmological redshift.

In cosmology the redshift is one of the easiest quantities to measure, since a spectral line from a distant galaxy has
a known rest-frame wavelength and the present-day wavelength can be measured. If the distant galaxy and us, the
observer, are in a comoving frame, the wavelengths of emission and observation are related by

λobs

λem

=
a(tobs)

a(tem)
. (9)

[Here λ denotes wavelength, not affine parameter – sorry!] Astronomers conventionally define instead the redshift

z ≡ λobs

λem

− 1 =
a(tobs)

a(tem)
− 1. (10)

Usually we will also define a = 1 at the present day. (The alternative convention if the Universe is open or closed is
to set the spatial curvature K = ±1 and thus define a to be the radius of curvature of the Universe. This definition,
common in many early references, is very rare today since all the formulae are discontinuous at zero spatial curvature.)
Then it follows that

a(tem) =
1

1 + z
. (11)

Commonly we will use the redshift of the object and the scale factor a(tem) at which radiation reaching us was emitted
interchangeably. This is true as long as the emitter and the observer are both comoving. Any deviation from this
is called a peculiar velocity (precise definition: the 3-velocity of an object relative to a comoving observer). Typical
peculiar velocities of galaxies are of order 10−3c. The peculiar velocity of the Solar System is 370 km/s (measured
accurately via the CMB dipole, a purely special relativistic effect). The peculiar velocities of other galaxies are not
directly measured, but when they are at cosmological distances (z ≫ 10−2) they can usually be neglected. (The
exception is in the statistics of galaxy clustering, where we try to measure the distance between two far-away objects
that are near each other in 3D space.)

III. DISTANCE MEASURES IN COSMOLOGY

An observational cosmologist is immediately faced with an issue – when we see an object, how do we determine
its coordinates and the key properties such as its age? Clearly if we place ourselves at the (spatial) origin, then the
angular coordinates θ and φ are easy to find (we only see light rays with zero angular momentum and hence θ, φ are
constant). Then a light ray traveling toward us, in order to be null, has

dχ

dη
= −1. (12)

It follows that the redshift is related to the coordinates η and χ via the relation:

χ = η0 − η, z =
1

a(η)
− 1. (13)

Here the 0 subscript indicates the present day. The coordinate χ is called the radial comoving distance to a galaxy: it
is the distance that could be measured if, hypothetically, a sequence of rulers at rest relative to comoving observers
were laid down at the present day (i.e. on the surface Σt0) and stretched end-to-end from us to that galaxy. Obviously,
we can’t actually measure this.

It is of somewhat greater interest to construct distances that can be measured. For each standard method in
astronomy of measuring distance, one can construct a cosmological analogue. We consider the two most interesting
cases: standard rulers and standard candles.
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A. Standard rulers

A standard ruler is an object of known physical size ∆s. If it subtends an angle ∆θ, then we say that its angular

diameter distance DA is

DA =
∆s

∆θ
, (14)

as this is the distance one infers from its apparent size and simple trigonometry. From the aforementioned metric, we
find that

DA = aD(χ) =
D(χ)

1 + z
. (15)

The challenge is to find an object of known size. Unfortunately, the obvious choices don’t work: galaxies can have
a range of sizes and they evolve and merge as a function of time, and stars are essentially pointlike at cosmological
distances.

A variant on the standard ruler is to take an object whose comoving size ∆X is fixed – i.e. so that its size today
is ∆X but where it grows with the Universe in proportion to ∝ a(t). Then we define the comoving angular diameter

distance DAC :

DAC =
∆X

∆θ
= D(χ). (16)

This would apply to e.g. features in the galaxy distribution (the main option, which we will discuss later, is the
baryon-acoustic oscillation), which thus far have had greater success observationally than the conventional standard
ruler idea.

B. Standard candles

A standard candle is an object of known luminosity L (units: erg/s). If the observed flux is F (units: erg/cm2/s),
then we say that the luminosity distance DL is

DL =

√

L

4πF
(17)

(from L = 4πFD2
L).

To compute the luminosity distance, imagine a blackbody radiation source of some radius R and temperature T .
It emits a luminosity in its rest frame of

L = 4πR2σT 4. (18)

When it is observed by us, the solid angle occupied is determined by the angular diameter distance,

Ω = π

(

R

DA

)2

. (19)

However the radiation that we see from the object is no longer a blackbody at temperature T . It has expanded with
the Universe and is now a blackbody at temperature T/(1 + z). [The argument is the same as for the CMB: photons
have their wavelengths stretched by a factor of 1+z and are diluted by a factor of (1+z)3, so they retain a blackbody
spectrum.] The flux is now

F =
1

π
ΩσT 4 =

R2σ[T/(1 + z)]4

D2
A

, (20)

where 1
π σT 4 is the flux density of a blackbody seen at normal incidence (units: erg/cm2/s/sr). We then equate this

with

F =
L

4πD2
L

=
R2σT 4

D2
L

(21)
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to see that

DL = (1 + z)2DA = (1 + z)D(χ). (22)

The luminosity distance-redshift relation DL(z) thus contains the same information as the angular or comoving angular
diameter distance relations DAC(z) and DA(z), just with different factors of 1 + z.

The most successful standard candle thus far has been the Type Ia supernovae – this was one of the key pieces of
evidence for Λ > 0.

IV. COSMOLOGICAL PARAMETERS

It’s possible to write the present state of the Universe directly in terms of the density of each component, as well as
the spatial curvature and expansion rate. In practice, cosmologists usually use a slightly different parameterization.

A. Hubble constant

The first of the usual cosmological parameters is the Hubble constant H0: the present-day value of H . From this
one can define the critical density ρcr via

ρcr =
3H2

0

8π
, (23)

which is the density of matter (summed over all forms) that would be required to have a spatially flat cosmology. If
ρ < ρcr then the Universe must be open, and if ρ > ρcr then it must be closed. The numerical value, in conventional
units, is

ρcr = 1.88 × 10−29h2 g/cm
3
, (24)

where h = (H0/100 km/s/Mpc) is a commonly used shorthand for the Hubble constant. (According to fits to CMB
anisotropies from WMAP: h = 0.710± 0.025.) Clearly the critical density is very low by everyday standards – but it
turns out that the mean density of normal matter is only a few percent of critical!

B. Density parameters

Now the Universe contains many types of matter; for type X , we define the density parameter

ΩX =
ρX

ρcr

. (25)

There may be many contributions:

• Baryonic matter (which to an astronomer includes electrons even though they are not really baryons in the
particle physics sense) has density parameter Ωb.

• Dark matter (whatever it is) has density parameter Ωdm. (Note: sometimes you will see Ωc, where the “c”
refers to the dark matter being cold, i.e. with negligible velocity dispersion.) Nonrelativistic matter in total has
density parameter Ωm = Ωb + Ωdm.

• Radiation has density parameter Ωr. This includes both photons (the CMB) and – in cases where mass can be
neglected – neutrinos, i.e. Ωr = Ωγ + Ων .

• The cosmological constant has density parameter ΩΛ = Λ/(8πρcr) = Λ/(3H2
0 ). [It is conventional for this

purpose to put Λ on the right hand side of Einstein’s equations.]

[To be exact we should distinguish e.g. the density parameter Ωm0 today from that Ωm(t) at some other time, since
it is not constant. In practice, we write Ωm to mean the value today unless otherwise specified.]

The total density parameter of everything in the Universe gets the label Ω and determines the geometry. Specifically,
the first Friedmann equation evaluated today says

8

3
πρ0 = H2

0 + K, (26)
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or setting ρ0 = Ωρc:

K = H2
0 (Ω − 1). (27)

It is common convention to define yet another parameter

ΩK ≡ − K

H2
0

, (28)

which is the curvature measured in units of the inverse-squared Hubble length. It is a measure of how much spatial
curvature affects the easily accessible regions of the cosmos (out to z ∼ a few). Note that sadly it has the opposite

sign to K: for a closed model ΩK < 0 and for an open model ΩK > 0. The advantage of this definition is that one
then has all the Ωs add to 1:

Ωm + Ωr + ΩΛ + Ωanything else out there + ΩK = 1. (29)

In cosmology, one usually quotes the value of ΩK rather than K. It should be remembered that unlike the other Ωs,
ΩK does not correspond to the actual density of anything – it is most definitely part of the curvature side of Einstein’s
equation, not the matter. However, in terms of implementation in the Friedmann equation it is convenient, as we see
next.

C. The expansion history and distances

We are now ready to write the Friedmann equations in the form most familiar to cosmologists. Let us take the first
Friedmann equation,

8

3
πρ = H2 +

K

a2
. (30)

Writing ρ = ρm + ρr + ρΛ, and recalling the scalings with redshift (i.e. as a−3, a−4, and a0), we find

8

3
πρcr(Ωma−3 + Ωra

−4 + ΩΛ) = H2 − ΩKH2
0

a2
. (31)

Substituting for ρcr and solving for H gives

H(a) = H0

√

E(a), (32)

where the energy function is

E(a) = Ωma−3 + Ωra
−4 + ΩΛ + ΩKa−2. (33)

Thus in the expansion history, the curvature acts just like a new type of matter with w = − 1
3

(but the spatial
geometry makes it distinguishable).

The time and distance measures can then be obtained by integration. We note that

dt

da
=

1

aH
=

1

H0a
√

E(a)
, (34)

so

t =

∫

da

H0a
√

E(a)
. (35)

The conformal time has an additional factor of 1/a: thus

η =

∫

da

H0a2
√

E(a)
, (36)

and the radial comoving distance to an object seen at scale factor a is

χ = −
∫ a

1

da

H0a2
√

E(a)
. (37)



6

V. DISTANCES IN THE FRW UNIVERSE – EXAMPLES

Having defined the various distances, our next objective is to understand how they relate to the density and
curvature of the Universe. This subject underlies much of modern observational cosmology.

A. Einstein-de Sitter model

The simplest model of the cosmos we consider has only matter and is flat: this is the Einstein-de Sitter model,
Ωm = 1 and ΩK = ΩΛ = 0. This model has energy function

E(a) = a−3. (38)

We then see that the age of the Universe is

t =
1

H0

∫

a1/2 da =
2a3/2

3H0

, (39)

so the present-day age (a = 1) is t0 = 2/(3H0).
The conformal time is

η =
1

H0

∫

a−1/2 da =
2a1/2

H0

. (40)

Of key interest to us is that in the Einstein-de Sitter universe, the conformal time has a lower limit – at the Big
Bang η = 0 – but no upper limit: the universe lives forever and η → ∞. The consequence is that any two comoving
observers are in causal contact with each other if they wait long enough.

The distance measures can now be constructed: we have

χ = η(a = 1) − η(a) =
2

H0

(1 − a1/2) =
2

H0

(

1 − 1√
1 + z

)

. (41)

The comoving angular diameter distance DAC is the same as χ since the model is spatially flat. The angular diameter
and luminosity distances are different by factors of 1 + z:

DA =
2

H0(1 + z)

(

1 − 1√
1 + z

)

and DL =
2

H0

(1 + z)

(

1 − 1√
1 + z

)

. (42)

Here DL is a monotonically increasing function of z, but a peculiar property of cosmology (including not just the
Einstein-de Sitter model but the ΛCDM model as well!) is that DA reaches a maximum at z = 1.25. Beyond some
redshift, more distant objects appear closer, and as z → ∞ we have DA → 0. Thus the spots in the CMB, which
have physical sizes of order 105 light-years, appear to have angular sizes of tens of arcminutes, even though they are
only a few times larger (in physical scale) than galaxies (which are arcsecond-size at z ∼ 1).

However, the Einstein-de Sitter model does not describe our Universe: it cannot reproduce the supernova luminosity
distance results or galaxy clustering measurements. We thus turn our attention to more complicated models: the
open model (which provides a reasonable description of local galaxy clustering data but has serious problems with
CMB anisotropies and also with the supernovae), and then the ΛCDM model (which is consistent with all of the data
on the global structure of our Universe).

B. Open and closed models with Λ = 0

Next we consider the open universe model. This has only matter and no cosmological constant: Ωm < 1 and Λ = 0,
but is curved, ΩK = 1 − Ωm. The same formulae describe the closed model with Ωm > 1 via analytic continuation.
Both of these are now of historical interest.

In the open model, we have

E(a) = a−2[Ωm(a−1 − 1) + 1]. (43)
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The cosmic age is

t =
1

H0

∫

da
√

Ωm(a−1 − 1) + 1
. (44)

There is nothing especially remarkable about this except for its limits: t ≈ a3/2 at small a and t ≈ a at large a (open
case). Thus this cosmological model expands forever at a rate da/dt that approaches a constant.

The closed case is a bit different: there we find that E(a) = 0 at some maximum value of a,

amax =
1

1 − Ω−1
m

. (45)

The Friedmann equation then tells us that H = 0 when a reaches amax. Study of the integrand in Eq. (44) shows
that this is reached in a finite time, since the integrand has only a square-root divergence in the denominator, i.e. as
we approach amax we have dt/da ∝ (amax − a)−1/2. Thereafter, the closed universe turns around and recollapses, in
a time-reverse of its expansion. The universe ends in a Big Crunch in a finite amount of time given by

tBang→Crunch = 2H−1
0

∫ amax

0

da
√

Ωm(a−1 − 1) + 1

= 2H−1
0 amax

∫ 1

0

dx
√

Ωm(a−1
maxx−1 − 1) + 1

= 2H−1
0 amax

∫ 1

0

dx
√

Ωm[(1 − Ω−1
m )x−1 − 1] + 1

= 2H−1
0 amax

∫ 1

0

dx
√

(Ωm − 1)(x−1 − 1)

=
2Ωm

H0(Ωm − 1)3/2

∫ 1

0

dx√
x−1 − 1

=
πΩm

H0(Ωm − 1)3/2
. (46)

where we defined a = amaxx, and the last integral is solved by the substitution x = cos2 α.
Of greater interest both theoretically and observationally is the conformal time, which has an additional factor of

a−1 relative to Eq. (44):

η =
1

H0

∫

da

a
√

Ωm(a−1 − 1) + 1
. (47)

This is most easily evaluated by switching the integration variable to z:

η = − 1

H0

∫

dz

(1 + z)
√

Ωmz + 1
. (48)

If we define the new variable y = 1 + Ωmz, then

η = − 1

H0

∫

dy

(Ωm − 1 + y)
√

y
. (49)

Finally, if we define y = (Ωm − 1)β2, then we find

η = − 2

H0

(Ωm − 1)1/2

∫

dβ

1 + β2
= − 2

H0

(Ωm − 1)1/2 arctanβ = −2K−1/2 arctanβ = −2R arctanβ, (50)

where R is the radius of curvature of the universe. Now in the case of a closed universe, we find that y runs from ∞
at the Big Bang to 0 at turnaround (a = amax), so correspondingly β goes from ∞ to 0. It follows that the conformal
time changes by ηturnaround − ηBang = πR. Equivalently, in the lifetime of the universe from Bang to Crunch, the
conformal time increases by 2πR. We thus conclude that a closed matter-dominated universe lives exactly
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long enough for a light ray to go all the way around once between the Big Bang and the Big Crunch.
Even if we lived in such a universe, we couldn’t see ourselves.

Quite the opposite is true for the open model: here y runs from ∞ at the Big Bang to 1 − Ωm as a → ∞. In this
case, we set y = (1 − Ωm)γ2 and find in place of Eq. (50):

η = − 2

H0

(1 − Ωm)1/2

∫

dγ

γ2 − 1
= − 2

H0

(1 − Ωm)1/2 arccothγ = −2(−K)−1/2 arccothγ. (51)

Since arccoth ∞ = 0 and arccoth 1 = ∞, it follows that the open model has infinite conformal age in the future.
Thus – just like for the Einstein-de Sitter case – any two observers are in causal contact if they wait long enough.

The distance measures can be computed in either of these cases (and the formulae are related by analytic continu-
ation). From Eq. (50), the radial comoving distance in a closed model is

χ = η(z = 0) − η(z)

= η(β =
√

1/(Ωm − 1)) − η(β =
√

(1 + Ωmz)/(Ωm − 1))

= −2K−1/2

[

arctan

√

1

Ωm − 1
− arctan

√

1 + Ωmz

Ωm − 1

]

= 2K−1/2

[

arctan

√

1 + Ωmz

Ωm − 1
− arctan

√

1

Ωm − 1

]

. (52)

This looks messy but recall that what we need is sin(K1/2χ). We thus use

sin ϑ =
2 tan(ϑ/2)

1 + tan2(ϑ/2)
, (53)

and then recall that if ϑ/2 = arctanA − arctanB we may use the tangent difference formula:

tan
ϑ

2
=

A − B

1 + AB
, (54)

so that

sin ϑ =
2(A − B)/(1 + AB)

1 + (A − B)2/(1 + AB)2
=

2(A − B)(1 + AB)

(1 + AB)2 + (A − B)2
=

2(A − B)(1 + AB)

(1 + A2)(1 + B2)
. (55)

Applied in the case of A =
√

(1 + Ωmz)/(Ωm − 1) and B =
√

1/(Ωm − 1) gives

sin ϑ =
2(
√

1 + Ωmz − 1)[1 +
√

1 + Ωmz/(Ωm − 1)]/
√

Ωm − 1

[1 + (1 + Ωmz)/(Ωm − 1)][1 + 1/(Ωm − 1)]

= (Ωm − 1)1/2 2(
√

1 + Ωmz − 1)(Ωm +
√

1 + Ωmz − 1)

Ω2
m(1 + z)

. (56)

Now recalling that DL = (1 + z)K−1/2 sin(K1/2χ), we conclude that

DL = 2H−1
0

(
√

1 + Ωmz − 1)(Ωm +
√

1 + Ωmz − 1)

Ω2
m

. (57)

This equation is valid for either open or closed models.
A few aspects of Eq. (57) are of direct observational interest. One is the behavior at low z: if we Tayor expand,

DL = H−1
0

[

z +

(

1

2
− 1

4
Ωm

)

z2 + ...

]

. (58)

Thus the luminosity distance is linearly related to redshift for nearby objects, but when z ∼ O(1) the next-order
terms are important. The luminosity distance increases faster in open universes than in Einstein-de Sitter, making
DL(z) one of the classical methods for measuring Ωm. This was in fact the principal goal of the supernova efforts
that discovered Λ, except that they found that the luminosity distance increased even faster than Eq. (58) for Λ = 0.

The behavior at high z is different: Eq. (57) gives

DL → 2z

ΩmH0

or DAC → 2

ΩmH0

(z ≫ 1). (59)
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C. ΛCDM model

The next case that we will consider is the ΛCDM model (where CDM stands for cold dark matter, which is the
second greatest component of the cosmic pie). This model, unlike the others we have encountered, is in agreement
with the data on the global structure of the Universe.

In this model, the universe is spatially flat (K = 0) with Ωm + ΩΛ = 1. The energy function is

E(a) = Ωma−3 + 1 − Ωm, (60)

and the age of the universe is

t =
1

H0

∫

da

a
√

Ωm(a−3 − 1) + 1
. (61)

The limiting cases are t ∝ a3/2 at small a (i.e. during the matter-dominated phase) and t ∝ H−1
0 (1−Ωm)−1/2 ln a at

large a (i.e. in the Λ-dominated phase). Thus we see that in the far future, the universe expands exponentially (a is
an exponential function of t).

We may also find the radial distance to an object via

χ = − 1

H0

∫ a

1

da

a2
√

E(a)
=

1

H0

∫ z

0

dz
√

Ωm(1 + z)3 + 1 − Ωm

. (62)

The Taylor expansion of the argument of the square root is 1 + 3Ωmz + .., so we find

χ =
1

H0

∫ z

0

(

1 − 3

2
Ωmz + ...

)

dz =
1

H0

[

z − 3

4
Ωmz2 + ...

]

, (63)

and so the luminosity distance (1 + z)χ (recall: this is a spatially flat model) is

DL =
1

H0

[

z +

(

1 − 3

4
Ωm

)

z2 + ...

]

. (64)

In Eq. (58) for the open model, we were limited by the condition of positive matter density to have a quadratic
coefficient (of z2) no larger than 1

2
. However, the Λ model can accommodate a coefficient as large as 1. Thus, the

evidence from supernovae for a strong increase of the luminosity distance with redshift rules out the open Λ = 0
model but is consistent with Λ. Other combinations, such as models with both Λ and spatial curvature, are allowed
but the magnitude of ΩK is limited by other data (notably the CMB anisotropies).

The behavior of the conformal time is more fundamental: we have

η =
1

H0

∫

da

a2
√

Ωma−3 + 1 − Ωm

. (65)

If we define a⋆ = [Ωm/(1 − Ωm)]1/3, then defining a = a⋆/u we may write this as

η = − 1

H0a⋆

√
1 − Ωm

∫

du√
u3 + 1

. (66)

Of particular interest is that η has a finite range: the change in conformal time from the Big Bang to the indefinite
future is

∆η = − 1

H0a⋆

√
1 − Ωm

∫ 0

∞

du√
u3 + 1

=
1

H0Ω
1/3
m (1 − Ωm)1/6

∫

∞

0

du√
u3 + 1

=
2.804

H0Ω
1/3
m (1 − Ωm)1/6

. (67)

The fact that the integral converges at the lower limit is nothing new: it merely says that we can at present see only
galaxies out to some maximum (comoving) distance. But the convergence at the upper limit says the universe has a
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finite conformal lifetime. That is, while the physical lifetime of the universe is infinite – a comoving observer will see
the universe go on an infinite amount of proper time – there are objects farther away from us than ∆η that we can
never see and they can never see us. Moreover, even the galaxies we can see now at high redshift are at distance χ
exceeding the remaining conformal lifetime of the universe η(∞)−η0. We can never send any signals to these galaxies:
if you shoot your laser pointer at them, the photons travel only a finite comoving distance between now and t = ∞,
and rather than reaching those galaxies the photons are destined to become stuck in the exponentially expanding and
diluting intergalactic medium.

In the Λ-dominated universe, then, the future is that any systems not gravitationally bound to us by perturbations
(i.e. more than ∼ 10 Mpc away) will become permanently causally disconnected from us. There is a last signal that
we can send to such systems, and there is a last signal that they can send to us (it is very much like the event horizon
of a black hole, except that this time it is symmetrical between the two observers). The effect of Λ on observables
thus far may be subtle, but – if Λ is really the correct explanation for cosmic acceleration – it condemns us to the
loneliest of fates!


