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I. OVERVIEW

In this lecture, we will consider the general model of a homogeneous, isotropic universe. Only the metric structure
is considered here, while the dynamics are described in the next lecture.

Reading:

• MTW Ch. 27.

II. HOMOGENEITY & ISOTROPY

The basic assumption is that the Universe on large scales is homogeneous and isotropic. This is the cosmological

principle.
Why make this assumption? Initally this was a philosophical principle (“we are not special”), combined with the

desire to restrict the form of possible solutions to something we could analyze. But the homogeneous, isotropic models
are in good agreement with modern data. For example:

• The cosmic microwave background is isotropic to a few parts in 105 (aside from the dipole due to our motion).

• Cosmologically distant objects (quasars, GRBs) appear isotropic to a few parts in 102.

Testing homogeneity is harder than testing for the isotropy around a particular observer (us). Of course, if every
observer sees an isotropic universe, then the universe is homogeneous, but how can we be sure that we don’t live at
the center of a spherically symmetric universe? It turns out that there actually are tests of this, involving Thomson
scattering of the CMB off of distant electrons. If the Universe were inhomogeneous, one would expect that a distant
electron would see a different CMB temperature in different directions. Then after scattering, the CMB sky we see
would contain a mixture of different temperature blackbodies superposed by scattering, e.g. we would see

Iν =
∑

i

wi
2hν3

c2(ehν/kTi − 1)
, (1)

where
∑

i wi = 1. This mixture of blackbodies is not a blackbody spectrum. Since the COBE/FIRAS experiment
observes a blackbody to one part in ∼ 104, gross deviations from cosmic homogeneity are not acceptable [1]. (A possible
exception would be to imagine a universe in which the original CMB spectrum was narrower than a blackbody and was
smeared into a blackbody by electron scattering; in this case the blackbody spectrum must be a striking coincidence.
Such a suggestion causes other problems with early Universe physics, and besides we won’t consider anything this
contrived.)

How shall we formalize our notions of homogeneity and isotropy in GR? Really what we are saying is the following:

• The spacetime M can be sliced into spacelike surfaces Σt of constant cosmic time t.

• The surfaces are homogeneous and isotropic: given any two points O,P ∈ Σt (at the same t), and given any
spacelike unit vectors a ∈ TOΣt and b ∈ TPΣt tangent to Σt, there is an isometry (symmetry operation of the
spacetime) that takes O and a to P and b, and fixes the Σt′ (i.e. maps Σt′ → Σt′ ∀t′).

In most cases, the “slicing into surfaces of constant time” is unique, but we will encounter a few examples where this
is not the case.
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III. THE METRIC STRUCTURE – OVERALL FORM

We now consider the implications of homogeneity and isotropy for the metric structure. We begin by defining
the forward-pointing unit normal n to the surfaces Σt, which is a timelike vector: n · n = −1. We define a set of
comoving observers whose 4-velocity is n and whose trajectories are the integral curves of n. We may then define
a coordinate system using x0 = t as the time coordinate, and (x1, x2, x3) labeling which comoving observer passes
through a particular event.

We now begin placing restrictions on the form of the metric. A vector a is tangent to Σt if and only if its
contravariant t-component vanishes: a0 = 0. Also since the comoving observers’ 3 spatial coordinates are fixed, their
4-velocities have ni = 0, and n0 is the only nonzero component. But since n is the surface normal, we have niai = 0
if a is tangent to Σt. It thus follows that vectors tangent to Σt have a0 = 0, and hence

0 = a0 = g0ia
i + g00a

0 = g0ia
i (2)

for any ai. This implies that in our coordinate system:

g0i = 0. (3)

We next consider two points O and P on the same spacelike slice Σt. Then there is an isometry mapping O to P
that preserves the slices, so it follows that ∇t · ∇t is the same at both O and P . But in the above coordinate system
we have ∇µt = (1, 0, 0, 0) so

∇t · ∇t = g00 =
1

g00
. (4)

Since this is the same at O and P , we conclude that g00 can depend only on t and not on (x1, x2, x3). We also
note that since nµ = (n0, 0, 0, 0) is timelike, g00 < 0. We may then re-label the spacelike surfaces with a new time
coordinate t′ such that

t′ =

∫ √
−g00 dt. (5)

This new time coordinate is defined up to an additive constant. With the new relabeling, we have g00 = −1, and we
will take this choice from here on. The metric is now reduced to the form:

ds2 = −dt2 + gij dxi dxj . (6)

We are next interested in how gij depends on t, x1, x2, x3. We do this by taking any spacelike unit vector a ∈ TOΣt

(with a · a = 1) and defining the local velocity gradient:

H(t, xi, a) ≡ aµaν∇µnν . (7)

So far H is just a name but we will discover its importance soon. Note that it is allowed to depend only on t, and
not on xi or ai. Noting that a0 = a0 = 0, and that nµ = (1, 0, 0, 0), we see that

H(t) = aiajΓ
j
i0. (8)

If we use the expansion of the Christoffel symbol and the form of the metric (g0i = 0), we find that

Γj
i0 =

1

2
gjk ∂gik

∂t
, (9)

so that

H(t) =
1

2
aiajg

jk ∂gik

∂t
=

1

2
aiak ∂gik

∂t
. (10)

Now since this is independent of the direction of a, it follows that ∂gik/∂t must be some scalar multiple of gik:

∂gik

∂t
= 2Hgik. (11)
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We then define the scale factor a(t) via the relation:

a(t) = exp

∫

H(t) dt, (12)

which is defined up to an overall multiplicative constant. We may then write

gik(t, xj) = γik(xj)e2
R

H(t) dt = γik(xj)[a(t)]2. (13)

The metric then takes the form

ds2 = −dt2 + [a(t)]2γij(x
k) dxi dxj , (14)

where γij is the spatial metric of some 3-dimensional manifold (the slice Σt corresponding to the t where the scale
factor is 1). This 3-dimensional spatial manifold must be homogeneous and isotropic. This metric is the Friedmann-

Robertson-Walker metric, and H(t) is called the Hubble rate.
Normally in cosmology we will define the scale factor to be a = 1 at the present, but other conventions are in use.

IV. THE POSSIBLE SPATIAL GEOMETRIES

Our next task is to solve for the possible spatial geometries γij(x
k). These must be isotropic around any choice

of origin O; therefore we may write them in spherical polar coordinates (the proof of this is similar to our study for
spherical stars):

ds2
3 = dχ2 + f(χ)(dθ2 + sin2 θ dφ2). (15)

We must then find which functions f(χ) lead to a homogeneous isotropic 3-manifold. A simple way to begin this is
to consider the 3-dimensional Ricci tensor associated with Eq. (15). The Christoffel symbols are:

Γχ
θθ = −1

2
f ′,

Γχ
φφ = −1

2
f ′ sin2 θ,

Γθ
φφ = − sin θ cos θ,

Γθ
χθ = Γφ

χφ =
f ′

2f
, and

Γφ
θφ = cot θ, (16)

where the prime ′ denotes d/dχ. The sums are Γj
jχ = f ′/f , Γj

jθ = cot θ, and Γj
jφ = 0. The nontrivial parts of the

Ricci tensor are then

Rχχ =

(

f ′

f

)′

− f ′2

2f2
,

Rθθ = −1

2
f ′′ + csc2 θ − f ′2

2f
+

f ′2

2f
− cot2 θ = −1

2
f ′′ + 1, and

Rφφ = −1

2
f ′′ sin2 θ + sin2 θ − cos2 θ − f ′2

2f
sin2 θ − cos2 θ +

f ′2

2f
sin2 θ + 2 cos2 θ =

(

−1

2
f ′′ + 1

)

sin2 θ. (17)

In order for the 3-manifold to be spatially homogeneous and isotropic, it is necessary (though may not be sufficient)
for Rij = 2Kgij, where K is a constant (independent of χ). That is, we need

2K =

(

f ′

f

)′

− f ′2

2f2
=

− 1
2f ′′ + 1

f
. (18)

[The factor of 2 is arbitrary and introduced for consistency later.] In our search for spatially homogeneous solutions,
we use the first and last expressions in Eq. (18) to find

f ′′ = −4Kf + 2, (19)
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which is a simple linear ODE. If K 6= 0, it admits solutions

f =
1

2K
+ A cos(2K1/2χ) + B sin(2K1/2χ), (20)

where A and B are constants of integration. Regularity at O, however, requires that f = f ′ = 0 at χ = 0. This forces
on us the choice A = −1/(2K) and B = 0. Then we may simplify to

f =
1 − cos(2K1/2χ)

2K
=

1

K
sin2(K1/2χ). (21)

The alternative case is that K = 0. In this case, f ′′ = 2 and with the boundary condition at O we find f = χ2. This
is simply Eq. (21) with the limit K → 0 in accordance with l’Hôpital’s rule. It is readily seen that the other equality
in Eq. (18) is obeyed.

We are left with the spatial metric

ds2
3 = dχ2 +

sin2(K1/2χ)

K
(dθ2 + sin2 θ dφ2). (22)

Its homogeneity and isotropy are easily checked: this is the metric for a 3-sphere of radius K−1/2. In the limit
K → 0, it becomes flat 3-dimensional Euclidean space in spherical coordinates. If the spatial metric of the Universe
has K > 0, then we say that it is closed, and if K = 0 we say that it is spatially flat. The spatially flat 3-metric is

ds2
3 = dχ2 + χ2(dθ2 + sin2 θ dφ2). (23)

An interesting property of this metric is that it is possible to have K < 0. In this case, the Universe is open and
we take the analytic continuation of the sine function:

ds2
3 = dχ2 +

sinh2[(−K1/2)χ]

−K
(dθ2 + sin2 θ dφ2). (24)

In short, the spatial geometries have the following properties:

• Spatially flat, R
3. This is standard Euclidean space, with infinite volume and the usual rules of geometry.

Our own universe appears to be spatially flat to a very good approximation.

• Closed, S3. This space has the geometry of a 3-sphere, and the usual coordinate system corresponds to
hyperspherical coordinates. The maximum distance from the origin is the antipodal point at χ = πK−1/2,
where there is a coordinate singularity. The volume of the space is finite: V3 = 2π2K−3/2. The closed space
exhibits non-Euclidean features: the interior angles of a triangle add to > π, they Pythagorean theorem reads
a2 + b2 > c2, etc.

• Open, H
3. This is a “hyperbolic space,” with the same topology as Euclidean space. However it exhibits non-

Euclidean features: the interior angles of a triangle add to < π, they Pythagorean theorem reads a2 + b2 < c2,
etc. Not only is the volume of an open space infinite, but it is exponentially infinite in the sense that the
volume of a sphere of radius r is V3 = 2π(−K)−3/2[sinh(

√
Kr) −

√
Kr], which increases exponentially with

radius (instead of as ∝ r3).

• Projective space, RP 3. This is an alternative topology of the closed universe, in which antipodal points are
identified: (χ, θ, φ) = (πK−1/2 − χ, π − θ, π + φ). Locally it looks like a closed universe, but has only half the

volume: V3 = π2K−3/2. The unique region of the projective space has χ < π/(2
√

K), i.e. is the region between
the North Pole (origin) and equator; if one passes the equator one reappears on the opposite side of the sphere.
This is the only nontrivial topology of any of the spaces we have considered that is globally homogeneous and
isotropic. [2]

[1] See e.g. Goodman, PRD 52:1821 (1995) for details.
[2] Other possibilities, such as toroidal compactifications of R

3 in which one identifies points (x1, x2, x3) = (x1 + m1L, x2 +
m2L, x3 + m3L) with mi ∈ Z, are not globally isotropic.


