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I. OVERVIEW

Having considered the subject of relativistic stars, we now turn to the problem of spherically symmetric black holes.
Our first step is to understand the global geometry of the Schwarzschild hole. We will then proceed to consider the
formation and stability of such a hole.

Reading:

• MTW Ch. 31.

II. THE BEHAVIOR AT r = 2M

We begin with the Schwarzschild metric:

ds2 = −
(

1 − 2
M

r

)

dt2 +
dr2

1 − 2M/r
+ r2(dθ2 + sin2 θ dφ2). (1)

This describes the exterior (r > R) of a star of mass M . We will now proceed to consider the case of a metric
where this exterior geometry continues to hold all the way down to arbitrarily small radii. This spacetime is called
Schwarzschild spacetime. It is obviously well behaved for r > 2M .

What is less obvious about Schwarzschild is its behavior when r = 2M , where grr → ∞ and gtt → 0. The system
appears singular; but is this a real singularity, or is it an artifact of the coordinate system? We will eventually answer
the latter by constructing a well-behaved coordinate system, but let us first consider the plight of the hapless observer
O who dives into Schwarzschild. What does he/she experience?

A. Radial coordinate of an infalling observer

For simplicity, let’s assume that O has zero angular momentum, so travels along a curve with (θ, φ) constant, and
unit energy per unit mass – that is, ut = −1. Then the shell condition gαβuαuβ = −1 tells us that

− (ut)
2

1 − 2M/r
+

(

1 − 2
M

r

)

(ur)
2 = −1, (2)

or setting ut = −1 and solving for ur:

(ur)
2 =

−1 + 1/(1 − 2M/r)

1 − 2M/r
=

2M/r

(1 − 2M/r)2
, (3)

so taking the inward-going route: ur = −
√

2M/r /(1 − 2M/r) and

dr

dτ
= ur = −

√

2M

r
. (4)

Now O’s radial coordinate as a function of proper time is thus obtained from

r1/2 dr = −
√

2M dτ (5)
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or

r =

(

9M

2

)1/3

(τ0 − τ)2/3, (6)

where τ0 is an integration constant representing the time at which the observer would reach r = 0 (if they survive
that long). Note that the observer reaches r = 2M and even r = 0 in finite proper time!

B. Riemann tensor

We ask at this point what curvature tensor is seen by O. To answer this question, we compute the Riemann tensor,
first in the orthonormal basis {et̂, er̂, eθ̂, eφ̂}, and then transform to O’s rest frame. The nonzero Riemann tensor
components are:

Rt̂r̂t̂r̂ = −2
M

r3
, Rt̂θ̂t̂θ̂ = Rt̂φ̂t̂φ̂ =

M

r3
, Rθ̂φ̂θ̂φ̂ = 2

M

r3
, and Rr̂θ̂r̂θ̂ = Rr̂φ̂r̂φ̂ = −M

r3
. (7)

However the observer has an inward 4-velocity that is some linear combination of er̂ and et̂:

eτ̂ ≡ u =
et̂ − ver̂√

1 − v2
, (8)

and a corresponding spatial basis vector

eρ̂ =
er̂ − vet̂√

1 − v2
. (9)

Thus the observer sees {eρ̂, eθ̂, eφ̂} as spatial basis vectors. A straightforward calculation gives the transformation

Rτ̂ ρ̂τ̂ ρ̂ = −2
M

r3
, Rτ̂ θ̂τ̂ θ̂ = Rτ̂ φ̂τ̂ φ̂ =

M

r3
, Rθ̂φ̂θ̂φ̂ = 2

M

r3
, and Rρ̂θ̂ρ̂θ̂ = Rρ̂φ̂ρ̂φ̂ = −M

r3
. (10)

This is perfectly well behaved at r = 2M . Therefore we conclude that an observer doing local measurements of
nearby test particles will not see anything unusual happen as they cross r = 2M . However, when they reach r = 0
the curvature blows up. This represents a physical singularity of the system that cannot be removed by a choice of
coordinates.

C. How long does it take to reach r = 2M?

But O does not reach r = 2M in finite coordinate time. This is because if we solve for ut we have:

ut =
1

1 − 2M/r
→ dt

dr
=

ut

ur
= −1/(1 − 2M/r)

√

2M/r
= − 1

(1 − 2M/r)
√

2M/r
. (11)

The coordinate time for the observer’s trajectory is then

t = −
∫

dr

(1 − 2M/r)
√

2M/r
, (12)

or setting r = 2Mz2 and hence dr = 4Mz dz:

t = −4M

∫

z dz

(1 − z−2)z−1

= −4M

∫

z4 dz

z2 − 1

= −4M

∫
(

z2 + 1 +
1

2(z − 1)
− 1

2(z + 1)

)

dz

= −4M

(

1

3
z3 + z +

1

2
ln

z − 1

z + 1

)

+ t0

= −4M

(

r

6M

√

r

2M
+

√

r

2M
+

1

2
ln

√

r/2M − 1
√

r/2M + 1

)

+ t0. (13)
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At large radii r, this is perfectly well-behaved. However as r = 2M(1 + ǫ), with ǫ → 0+, we have the limit that

t → t0 − 2M ln

√
1 + ǫ − 1

2
≈ t0 + 2M ln

4

ǫ
→ +∞. (14)

Thus as far as the coordinate time is concerned – or as far as any external observer can see – O takes forever (literally)
to reach r = 2M . As seen by O themselves, however, the amount of time required is finite.

To summarize: the “singularity” at r = 2M is an artifact of the coordinate system, and it can be

reached by an observer who remains alive and well; but the singularity at r = 0 is real. At r = 0, the
known laws of physics must break down: basic operations such as derivatives or even defining a continuous function
become impossible.

III. KRUSKAL-SZEKERES COORDINATES

That there is no actual singularity at r = 2M suggests that we might build a new coordinate system without such
pathological behavior. This system will require no modification to θ or φ, but will require new coordinates to replace
r and (surprisingly) t.

The basis of this new coordinate system is the set of null geodesics emanating from and disappearing into the
central body. A radial null geodesic must have

−
(

1 − 2
M

r

)

(ut)2 +
(ur)2

1 − 2M/r
= 0. (15)

Then

dt

dr
= ± 1

1 − 2M/r
. (16)

We define the tortoise coordinate r⋆ to be a rescaled version of r for which radial null geodesics are 45◦ lines in the
(t, r⋆) plane. That is, we want dt/dr⋆ = ±1. Thus we want to choose r⋆ to be given by

r⋆ =

∫

dr

1 − 2M/r
=

∫
(

1 +
2M

r − 2M

)

dr = r + 2M ln
r − 2M

2M
(17)

(we may simply choose the integration constant this way as we use this equation to define r⋆).
Mathematically the new coordinate r⋆ is simply a change of variable from r, but it has a different range of appli-

cability: the regime 2M < r < ∞ is mapped into −∞ < r⋆ < ∞. There is also formally a function r(r⋆), but since
solving Eq. (17) for r does not have an analytic solution in terms of simple functions we won’t write it down. Taking
r⋆ in place of r, then, we have

ds2 =

(

1 − 2
M

r

)

(−dt2 + dr2
⋆) + r2(dθ2 + sin2 θ dφ2). (18)

Here r is a function of r⋆. The “normal” part of the spacetime, r > 2M , is now mapped into the plane (t, r⋆) ∈ R
2.

The next step is to define a rotated coordinate system, where instead of specifying a point by (t, r⋆) we specify
which outgoing null ray and which ingoing null ray intersect there. This is equivalent to rotating 45◦:

Ṽ − Ũ = 2r⋆ and Ṽ + Ũ = 2t. (19)

Again the “normal” part of the spacetime is now in (Ũ , Ṽ ) ∈ R
2, and noting that −dt2 + dr2

⋆ = −dŨ dṼ we find:

ds2 = −
(

1 − 2
M

r

)

dŨ dṼ + r2(dθ2 + sin2 θ dφ2). (20)

Here again r is a function: r(Ũ , Ṽ ).

In the (Ũ , Ṽ ) system, it is readily seen that objects moving “forward in time” (i.e. on timelike trajectories with

dt/dτ > 0) must have dŨ/dτ > 0 and dṼ /dτ > 0. Thus they must be moving to the upper-right (first quadrant).
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Unfortunately, Eq. (20) still does not eliminate the troublesome coordinate singularity at r = 2M . This can be

done by rescaling Ũ and Ṽ to new variables ũ(Ũ) and ṽ(Ṽ ) defined monotonically, which preserves the statement that
observers must move to the upper-right. Under such a rescaling, we have

gũṽ = gŨṼ

∂Ũ

∂ũ

∂Ṽ

∂ṽ
≡ gŨṼ

f
, (21)

so in order to eliminate the zero-crossing at r − 2M in gŨṼ , we want f ≡ (∂ũ/∂Ũ)(∂ṽ/∂Ṽ ) to be of the form r − 2M
times an analytic nonzero function. We note that from Eq. (17)

er⋆/(2M) =
( r

2M
− 1
)

er/(2M), (22)

so having a factor of er⋆/(2M) in f would satisfy our requirements. In fact, since

er⋆/(2M) = e(Ṽ −Ũ)/(4M) = eṼ /(4M)e−Ũ/(4M), (23)

our problem separates nicely: we could have f ∝ er⋆/(2M) by choosing

∂ũ

∂Ũ
∝ e−Ũ/(4M) and

∂ṽ

∂Ṽ
∝ eṼ /(4M). (24)

(The constants of integration are irrelevant.) Thus we choose

ũ = −e−Ũ/(4M) and ṽ = eṼ /(4M). (25)

[We inserted the − sign in front of ũ to ensure that ∂ũ/∂Ũ > 0 and hence we don’t flip the spacetime coordinates.]
Now f = er⋆/(2M)/(4M)2, so that

gũṽ = − 1 − 2M/r

er⋆/(2M)/(4M)2
= −e−r/(2M) (4M)2(1 − 2M/r)

(r/2M − 1)
= −32M3

r
e−r/(2M). (26)

Thus:

ds2 = −32M3

r
e−r/(2M)dũ dṽ + r2(dθ2 + sin2 θ dφ2). (27)

In Eq. (27), r is a function r(ũ, ṽ). This function itself has no simple analytic form. The inverse transformation,
however, is easy to express:

ũ = −e−(t−r⋆)/(4M) = −
√

r − 2M

2M
er/(4M)e−t/(4M) and ṽ = e(t+r⋆)/(4M) =

√

r − 2M

2M
er/(4M)et/(4M). (28)

This is the Kruskal-Szekeres coordinate system.
[Note: MTW does a further rotation of this system by 45◦ to (u, v, θ, φ); I won’t do that. I trust that you can think

of particles having to increase both ũ and ṽ along their world lines. I will draw the diagram at a 45◦ angle if you like.]
The relationship with r is key to understanding the Kruskal-Szekeres coordinate system. We note that

er⋆/(2M) = −ũṽ and t = 2M ln

(

− ṽ

ũ

)

, (29)

so the normal region with r > 2M and −∞ < t < ∞ occupies the 2nd quadrant, ũ < 0 and ṽ > 0. The entire
quadrant is legal – er⋆/(2M) can have any positive value – and while all particles move to the upper-right, curves of
constant r are described by hyperbolas with ũṽ = constant. Furthermore, we can see that the straight lines through
the “origin” are curves of constant t.

[Warning: MTW, like many references, refers to the 1st, 2nd, 3rd, and 4th quadrants in the (ũ, ṽ) plane as,
respectively, regions II, I, IV, and III. I find this very confusing, but I suppose it makes sense if we live in region I.]

The location where the previous coordinate system was ill-behaved was at r = 2M or r⋆ = −∞, which is now
described by the “crosshairs” ũṽ = 0. A particle approaching this from the 2nd quadrant (e.g. the ill-fated O from
the previous section!) reaches this surface at t = ∞. Since the observer must move to the upper-right, he/she is now
forbidden from crossing back into the 2nd quadrant, i.e. into the “normal” portion of the Universe. Such a zone,
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compact as viewed from the outside (it is restricted to small r) but from which there is no escape, is called a black

hole. Its edge, r = 2M in this case, is called the event horizon.
So what happens inside a black hole? Well, this is the 1st quadrant now. The radius coordinate r does not do

anything special. Indeed, we can see from Eq. (17) that

−ũṽ = er⋆/2M = −r − 2M

2M
er/(2M). (30)

So even though r⋆ is now imaginary (the logarithm of a negative number), the function (r − 2M)er/M/(2M) can go
negative for r < 2M . However, r reaches zero at ũṽ = 1. This is the final singularity. Note that it cannot be avoided:
the observer is moving to the upper-right, and once they have crossed the event horizon their doom is sealed.

The spacetime admits other regions as well. If we flip the sign of both ũ and ṽ, then both ũṽ (and hence r) and ṽ/ũ
(and hence t) retain their original values. Thus, if one takes seriously the analytic continuation of the Schwarzschild
metric (which one should not if the black hole was formed by a collapsing star!) then it contains:

• 1st quadrant [II]: The interior of the black hole, r < 2M . Particles may move either direction in t, but always
to smaller r. This quadrant is cut off at the final singularity at ũṽ = 1.

• 2nd quadrant [I]: The normal exterior of the hole. Particles may move either direction in r, but always forward
in t. Particles that reach the event horizon at ũ = 0 cross into the hole and can no longer send signals to the
2nd quadrant.

• 3rd quadrant [IV]: The past interior of the black hole. This is bounded by the past singularity at ũṽ = 1.
Particles in this region may move either direction in t, but always to larger r. They may choose to reach either
the 2nd or 4th quadrants; but entering one or the other is their destiny.

• 4th quadrant [III]: A mirror universe, asymptotically flat and identical to the 2nd quadrant. Particles may
move either direction in r, but always backward in t. Particles that reach the event horizon at ṽ = 0 cross into
the hole (1st quadrant) and are doomed.

Particles that cross from the 3rd to the 2nd quadrant emerge at r = 2M and t = −∞; this fountain of stuff from the
infinite past is called a white hole; but we will see that these are not expected in nature (unless somehow present in the
initial conditions). If one takes a spatial slice such as ũ + ṽ = 0 through the metric, then one can see that the normal
and mirror universes are connected via an Einstein-Rosen bridge with a “throat” of circumference 2πr(0, 0) = 4πM .
Unfortunately, such a bridge cannot be crossed; anyone who tried would become trapped in the 1st quadrant and hit
the singularity.

But, we will see later that the physically relevant portions of the Schwarzschild spacetime are the

subset of the 1st and 2nd quadrants exterior to a collapsing star. Thus the event horizon and final singularity
are actually realized, but (sadly) the mirror universe and the white hole are mere analytic continuations, and are as
unphysical as the indefinite extrapolation of the arc of a basketball along an elliptical trajectory through Earth with
one focus at the planet’s center.

IV. THE PENROSE DIAGRAM

The preceding machinery is sufficient to describe Schwarzschild geometry, but in studying more complicated black
holes we need one more transformation to make each of the above regions finite in extent. This transformation is

ũ = tan ξ and ṽ = tan η. (31)

Then

ds2 = −32M3

r
e−r/(2M) sec2 ξ sec2 η dξ dη + r2(dθ2 + sin2 θ dφ2). (32)

This maps the entire universe, including its analytic continuation, into a subset of −π
2 < ξ < π

2 , −π
2 < η < π

2 . The
future singularity (in the 1st quadrant) is now ξ+η = π

2 , and the past singularity (in the 3rd quadrant) is ξ+η = −π
2 .

Such a picture of a spacetime, with each of its major regions shown as a finite open region and with the causal
structure on display by having two of the coordinates defined by sets of null curves propagating in opposite directions,
is called a Penrose diagram. The Penrose diagram is useful in a great many problems. Most importantly, it shows the
causal structure of the spacetime, and allows us to talk about the edges of the diagram – in this case, for example,
radiation escaping from the system to infinity goes to future null infinity (−π

2 < ξ < 0, η = π
2 ), and spatial infinity is

at (−π
2 , π

2 ). We will see such diagrams again for rotating black holes, and in cosmology.


