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I. OVERVIEW

We are now ready to investigate the stability against radial perturbations of stars. We will investigate both the
case of purely Newtonian stars, as well as weakly relativistic stars in the critical case that Γ1 ≈ 4

3
. Note here that we

consider only stability against radial perturbations – convective instabilities (as occur in the outer layers of the Sun!)
are not described.

Reading:

• MTW Ch. 26.

II. REPRISAL

From the previous lecture, we recall that a star is stable against radial perturbations if the energy functional

E [ζ] ≡

∫ R

0
(Pζ′2 − Qζ2) dr
∫

R

0
Wζ2 dr

(1)

is positive for all perturbations ζ = r2e−Φoξ obeying the boundary conditions

lim
r→0+

ζ

r3
= finite and lim

r→R−

(Γ1pζ′) = 0. (2)

Here the coefficients in the equation are

W = r−2(ρ + p)e3Λ−Φ,

P = Γ1pr−2eΛ+3Φ, and

Q = eΛ+3Φ

[

p′2

r2(ρ + p)
+ 4

(ρ + p)(m + 2πr3p)

r4(r − 2m)

]

. (3)

The eigenfrequencies σ are found from the equation

σ2Wζ = −(Pζ′)′ − Qζ. (4)

In analogy to quantum-mechanical language, one could treat two possible functions ζ1 and ζ2 as having an “inner
product”

〈ζ1|ζ2〉 =

∫ R

0

Wζ∗1 ζ2 dr (5)

with a Hilbert space of functions satisfying the boundary condition. If one constructs the “Hamiltonian” defined by
the relation

〈ζ1|H |ζ2〉 =

∫

R

0

(Pζ′1
∗ζ′2 − Qζ∗1 ζ2) dr (6)
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which is explicitly Hermitian, then the Hamiltonian function is

H [ζ] = −
1

W
(Pζ′)′ −

Q

W
ζ (7)

and its eigenvalues are the σ2 corresponding to normal modes. This allows us to use all of the machinery of quantum
mechanics, including the variational principle.

We now examine several limiting cases.

III. NEWTONIAN STARS

The simplest case is that of a Newtonian star. In this case, we have p′ = −ρm/r2 and the potentials are small,
hence

W =
ρ

r2
, P = Γ1

p

r2
, and Q = −4

p′

r3
. (8)

Let us begin by considering a trial function with no nodes, which might make a reasonable approximation to the
ground state (lowest mode): ζ = ǫr3, which corresponds to a homologous expansion or contraction. Such a trial gives

E [ζ] =

∫ R

0
(9Γ1pr2 + 4p′r3) dr

∫ R

0
ρ2r4 dr

. (9)

Integrating by parts in the numerator gives

E [ζ] =
16pr3|Rr=0 +

∫ R

0
(9Γ1pr2 − 12pr2) dr

∫ R

0
ρ2r4 dr

. (10)

The surface term vanishes (why?) and we are left with the conclusion that the homologous trial function has nonneg-
ative energy if and only if

∫ R

0

(

Γ1 −
4

3

)

pr2 dr ≥ 0. (11)

Any Newtonian star not satisfying Eq. (11) is unstable! This immediately implies the instability of the
sequence of stars intermediate between white dwarfs and neutron stars, for which most of the interior has a soft
equation of state. [Since M/R ≪ 1 for these objects, and Γ1 −

4

3
is of order unity, relativistic corrections cannot save

these objects.]
Note that we have achieved this result without any explicit solution of the eigenvalue equation; we have not found

the unstable mode. Such is the great power of the variational principle.
We have also identified 4

3
as a critical value of the adiabatic exponent; this number determines the fate of stars.

A. Stars with Γ1 ≥
4

3

Let us next consider the case of a star with constant Γ1 = 4

3
. What is to become of its perturbations? We note

that the energy functional is

E [ζ] =

∫

R

0
(Γ1pr−2ζ′2 + 4p′r−3ζ2) dr

∫ R

0
ρr−2ζ2 dr

. (12)

Applying integration by parts to the numerator, we find that it is

numer =

∫

R

0

[

Γ1pr−2ζ′2 − 4p(r−3ζ2)′
]

dr

=

∫

R

0

[(

Γ1 −
4

3

)

pr−2ζ′2 +
4

3
pr−2ζ′2 − 8pr−3ζζ′ + 12pr−4ζ2

]

dr

=

∫

R

0

(

Γ1 −
4

3

)

pr−2ζ′2 dr +

∫

R

0

4

3
pr−2(ζ′ − 3r−1ζ)2 dr ≥ 0, (13)
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with equality only for ζ′ − 3r−1ζ = 0 (equivalently ζ ∝ r3) and Γ1 = 4

3
.

Thus we conclude that a Newtonian star with Γ1 = 4

3
throughout is linearly neutrally stable: it possesses a single

normal mode with zero frequency, and all other modes have σ2 > 0. A full nonlinear analysis is required to understand
the true stability (or not) of the star, since one needs to know whether nonlinear effects stabilize or destabilize the
neutral mode. Later we will see that in full GR, a star with Γ1 = 4

3
is de-stabilized.

A Newtonian star with Γ1 > 4

3
is absolutely stable against small radial perturbations. Hence we expect white

dwarfs (for which Γ1 = 5

3
in the nonrelativistic-electron limit and drops to 4

3
in the relativistic limit) to be stable. The

onset of inverse-β reactions at high density, which reduce Γ1 below the ideal Fermi gas value of 4

3
, would be expected

to de-stabilize the star.

B. Stars with Γ1 ≈
4

3

What about stars for which Γ1 is very nearly 4

3
, but is slightly greater in some layers and less in others? This is not

an idle question, since we have seen that it is precisely what occurs in a massive WD. The stability of such stars can
be addressed using time-independent perturbation theory: one starts with an “unperturbed” Hamiltonian (and inner
product) and considers the first-order correction to σ2 that results when one changes it. To first order, the change in
the energy functional when one perturbs the functions P , Q, and W is

δ(σ2) = δE [ζ] =

∫ R

0
(δP ζ′2 − δQ ζ2) dr

∫ R

0
Wζ2 dr

− σ2

∫ R

0
δW ζ2 dr

∫ R

0
Wζ2 dr

. (14)

[Note that for an eigenmode one does not need to include δζ corrections because the energy functional is already
stationary.] In the particular case where one perturbs from a Γ1 = 4

3
star with ζ = r3, this leads to the result for the

nearly neutral mode

σ2 =

∫

R

0
(9r4δP − r6δQ) dr

∫

R

0
ρr4 dr

. (15)

This is the perturbation theory result for a nearly Newtonian star with Γ1 near 4

3
. It is valid for any perturbation δP

and δQ, whether arising from equation of state corrections or relativistic corrections.
Here we first consider the Newtonian corrections. Since Γ1 appears only in P and not Q, we have (see Eq. 8):

δP =

(

Γ1 −
4

3

)

p

r2
. (16)

Therefore,

σ2 =

∫ R

0
9r2p(Γ1 −

4

3
) dr

∫

R

0
ρr4 dr

. (17)

This indicates that (i) the criterion for stability is whether the pressure-averaged adiabatic index

Γ̄1 =

∫ R

0
r2pΓ1 dr

∫

R

0
r2p dr

(18)

exceeds 4

3
; and (ii) that the oscillation frequency is

σ2 = 2(3Γ̄1 − 4)
T

I
, (19)

where I is the moment of inertia

I =
8π

3

∫

R

0

ρr4 dr (20)

and T is the the volume-integral of the pressure

T = 4π

∫ R

0

r2p dr. (21)
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The virial theorem tells us that

T =
1

3
|Ω|, (22)

where Ω is the gravitational binding energy.

IV. GR TERMS AND POST-NEWTONIAN INSTABILITY

Of course, this is a GR class, so our next move will be to put GR back in. But rather than doing a full analysis of
the deeply relativistic regime, we will content ourselves with an understanding of how the leading-order GR correction
modifies the stability of stars near Γ1 = 4

3
. We note that for an object of mass M and radius R, we have the orders

of magnitude

P ∼
M2

R6
and Q ∼

M2

R8
, (23)

and we want to work to the next order, i.e. an additional factor of M/R smaller.
To do this, we need only identify the correct δP and δQ to put in Eq. (15). Comparing to Eq. (8), we see that

δPGR = Γ1

p

r2
eΛ+3Φ − Γ1

p

r2
≈

4

3

p

r2
(Λ + 3Φ) ≈

4

3

p

r2

(m

r
+ 3Φ

)

(24)

(to lowest order in the potentials, and keeping Γ1 −
4

3
as also a perturbation) and – using the TOV equations several

times –

δQGR = eΛ+3Φ

[

p′2

r2(ρ + p)
+ 4

(ρ + p)(m + 2πr3p)

r4(r − 2m)

]

+ 4
p′

r3

≈ −4(Λ + 3Φ)
p′

r3
+ eΛ+3Φ

[

p′2

r2(ρ + p)
+ 4

(ρ + p)(m + 2πr3p)

r4(r − 2m)
+ 4

p′

r3

]

= −4(Λ + 3Φ)
p′

r3
+ eΛ+3Φ

[

p′2

r2(ρ + p)
− 4

p′

r3

m + 2πr3p

m + 4πr3p
+ 4

p′

r3

]

= −4(Λ + 3Φ)
p′

r3
+ eΛ+3Φ

[

p′2

r2(ρ + p)
+ 8π

p′

r3

r3p

m + 4πr3p

]

≈ −4(Λ + 3Φ)
p′

r3
+

p′2

r2(ρ + p)
+ 8π

pp′

m

≈
p′

r3

(

−4Λ − 12Φ +
rp′

ρ + p

)

− 8π
pρ

r2

≈ −
ρm

r5

(

−4
m

r
− 12Φ −

m

r

)

− 8π
pρ

r2

=
ρm

r5

(

5
m

r
+ 12Φ

)

− 8π
pρ

r2
. (25)

The numerator of Eq. (15) is then (using many integrations by parts, and Newtonian structure relations since we
are already at the leading post-Newtonian order):

numer =

∫

R

0

[

9r4 4

3

p

r2

(m

r
+ 3Φ

)

−
ρm

r5

(

5
m

r
+ 12Φ

)

r6 + 8π
pρ

r2
r6

]

dr

=

∫

R

0

[

12pmr + 36pΦr2 − 5ρm2 − 12ρmrΦ + 8πpρr4
]

dr

=

∫

R

0

[

12pmr + 12pΦ(r3)′ − 5ρm2 − 12ρmrΦ + 2pr2m′
]

dr

=

∫ R

0

[

12pmr − 12(p′Φ + pΦ′)r3 − 5ρm2 − 12ρmrΦ − 2(p′r2 + 2pr)m
]

dr

=

∫ R

0

[

12pmr − 12(−ρmrΦ + pmr) − 5ρm2 − 12ρmrΦ − 2(−ρm + 2pr)m
]

dr

=

∫ R

0

[

−4pmr − 3ρm2
]

dr. (26)
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We thus have a contribution to the normal mode frequency from lowest-order GR corrections:

δ(σ2)GR = −
8π

3I

∫ R

0

[

4pmr + 3ρm2
]

dr. (27)

Overall we find a lowest normal-mode frequency:

σ2 = 2(3Γ̄1 − 4)
T

I
−

8π

3I

∫ R

0

[

4pmr + 3ρm2
]

dr, (28)

implying that for small deviations from Γ1 = 4

3
the star is stable against radial perturbations if

Γ̄1 >
4

3
+

4π

9T

∫

R

0

[

4pmr + 3ρm2
]

dr. (29)

Using 3T = |Ω|, we conclude that the condition is

Γ̄1 >
4

3
+ α

M

R
, (30)

where

α ≡
R

3M |Ω|

∫ R

0

[

4pmr + 3ρm2
]

4πr2 dr. (31)

Inspection shows that α is of order unity – we have |Ω| ∼ M2/R, ρ ∼ M/R3, and p ∼ M2/R4, so the integral is of
order M3. Thus we see that GR is a destabilizing influence on stars with Γ1 near the critical value of 4

3
,

and that the critical Γ̄1 required for stability exceeds 4

3
by an amount of order the potential well depth.

It is straightforward to evaluate α for e.g. the uniform-density case, in which:

ρ =
3M

4πR3
, m =

r3

R3
M, and p =

3M2

8πR4

(

1 −
r2

R2

)

. (32)

Using |Ω| = 3

5
M/R, we then find that (substituting x = r/R):

α =
5

9

∫ 1

0

[

3

2π
x4(1 − x2) +

9

4π
x6

]

4πx2 dx =
125

189
. (33)

It is easily seen that as M/R becomes > 0.1, as it does for more massive neutron stars, the destabilizing effects of
GR become significant. Indeed, this explains the existence of a maximum mass for a star made of ideal neutron gas,
despite the fact that such matter has Γ1 > 4

3
.


