
Lecture XXI: Radial pulsations and stability

Christopher M. Hirata
Caltech M/C 350-17, Pasadena CA 91125, USA∗

(Dated: January 25, 2012)

I. OVERVIEW

Having constructed the equilibrium stellar configurations, we are now poised to ask whether they are stable to small
perturbations. This leads us to the subject of relativistic stellar pulsations. One may classify such pulsations by their
angular dependence: when we investigate the full subject we will find modes of every spherical harmonic index ℓ ≥ 0.
However, for the cold stars of interest to us the only unstable objects are those with purely radial (ℓ = 0) unstable
modes. In particular, the sequence of stars in between white dwarfs and neutron stars (whose cores are made of the
mixed nuclei-in-neutron-gas phase) is unstable against radial oscillations: if infinitesimally perturbed, such an object
either implodes to a neutron star, or explodes into a cloud of neutron-rich radioactive matter.

Reading:

• MTW Ch. 26.

II. THE PERTURBATION PROBLEM

We consider for the moment only linear perturbation theory for simplicity – second order terms in the perturbations
are to be neglected. We also use the overdot ˙ to denote ∂/∂t, and the prime ′ to denote ∂/∂r.

We consider a spherically symmetric, but time-dependent system with metric:

ds2 = −e2Φ dt2 + e2Λ dr2 + r2(dθ2 + sin2 θ dφ2), (1)

where now both Φ and Λ are functions of (t, r). They may be described by the background solution plus a perturbation:

Φ(t, r) = Φ0(t) + δΦ(t, r), (2)

and similarly for Λ. The fluid material under consideration also has perturbations in its density ρ, pressure p, and
baryon number density n, e.g.

ρ(t, r) = ρ0(t) + δρ(t, r). (3)

Finally there is a 4-velocity described by ut and ur. We describe such a velocity by the displacement of a fluid
parcel. That is, a parcel that in the unperturbed problem was located at (ro, θo, φo) moves to (ro + ξ, θo, φo), where
the radial coordinate displacement ξ is a function of ro and t. Since we are in linear perturbation theory it is not
necessary to distinguish ξ(t, r) from

ξ(t, ro) = ξ(t, r − ξ) = ξ(t, r) − ξ′(t, r)ξ(t, r) + ..., (4)

although in most higher-order perturbation theory analyses ξ is defined in Lagrangian coordinates, i.e. ξ(t, ro) is
taken as the fundamental variable. The 4-velocity of a fluid parcel is then described by the two conditions:

u · u = −1 → ut = e−Φ + h.o.t. (5)

and

ur

ut
= ξ̇ → ur = e−Φξ̇ + h.o.t. (6)
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A variable such as δp refers to the perturbation in pressure at a given coordinate r. It is thus called an Eulerian

perturbation. We may also consider the Lagrangian perturbation ∆p in which one takes as the reference not the
background value at that coordinate but the background value at the equilibrium position of the fluid parcel. This
differs by

∆p(t, r) = p(t, r) − po(ro) = p(t, r) − po(r − ξ(t, r)) = p(t, r) − po(r) + p′o(r)ξ(t, r) = δp(t, r) + p′o(r)ξ(t, r). (7)

A similar transformation holds for ∆ρ, ∆n, etc.
With the help of these relations for u, the entire problem can be described in terms of the 6 perturbation variables

δΦ, δΛ, δρ, δn, δp, and ξ, all of which are functions of t and r. Our investigations will show that of this set only 2
initial conditions need to be specified, and that the normal modes of oscillation can be found by solving a 2nd order
ODE.

A. Background equations

The background solution is as previously derived (with some slight algebraic manipulation):

Λ′

o =
1

2r
(1 − e2Λo) + 4πrρoe

2Λo ,

p′o = −(ρ0 + p0)Φ
′

o, and

Φ′

o = −
1

2r
(1 − e2Λo) + 4πrpoe

2Λo . (8)

III. THE PERTURBATION EQUATIONS

We now need 6 equations to close the system involving 6 variables. It is not a priori obvious what form the
equations will take – as we proceed we will discover that the system is a wave equation in (t, r) with the usual features
(hyperbolic system, information travels at the speed of sound, possesses a self-adjoint form, etc.). Of course, this
means we will need 6 equations. The ones we will use are:

• Baryon conservation.

• Adiabaticity.

• Energy-momentum conservation (2 nontrivial components).

• Einstein equations (2 nontrivial components).

A. Baryon conservation

The first law here is baryon conservation,

(nuα);α = 0. (9)

Using the product rule, we can re-write this as

uαn,α + nuα
;α = 0. (10)

The first term is the proper time derivative of n, dn/dτ , along the trajectory of a fluid parcel, which is equal to
d∆n/dτ . Thus:

d

dτ
∆n = −nuα

;α. (11)

Now we see that

uα
;α = uα

,α + Γα
αβuβ = u̇t + ur′ + Γα

αtu
t + Γα

αru
r. (12)
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The Christoffel symbols are:

Γα
αt = Φ̇ + Λ̇ and Γα

αr = 2r−1 + Φ′ + Λ′, (13)

so we have

uα
;α = ∂t[e

−Φ] + [e−Φξ̇]′ + (Φ̇ + Λ̇)e−Φ + (2r−1 + Φ′ + Λ′)e−Φξ̇ = e−Φ(ξ̇′ + Λ̇ + 2r−1ξ̇ + Λ′ξ̇). (14)

Now in Eq. (11) it is clear that since ∆n is already a perturbation variable, we may use the unperturbed operator
d/dτ → e−Φ∂t. This gives

∆̇n = −n0[ξ̇
′ + Λ̇ + 2r−1ξ̇ + Λ′ξ̇]. (15)

Integrating, and using that ∆n = 0 in the unperturbed state, we find

∆n = −n0

[

ξ′ +

(

2

r
+ Λ′

)

ξ + δΛ

]

(16)

or

∆n = −n0[r
−2e−Λo(r2eΛoξ)′ + δΛ]. (17)

Note that this is an initial-value equation – it contains no dynamical information (no dots)!

B. Adiabaticity

The equation of state gives us a relation between the baryon density perturbation and the pressure perturbation
assuming no heating of the material (in our case, that it remains cold). This is determined by the adiabatic exponent:

Γ1 ≡
∂ ln p

∂ lnn

∣

∣

∣

∣

s

, (18)

where s is the entropy per baryon (zero for cold matter). One then has

∆p = Γ1

po

no

∆n. (19)

Substituting in Eq. (17), and converting to an Eulerian perturbation, we find

δp = −Γ1po[r
−2e−Λo(r2eΛoξ)′ + δΛ] − p′oξ. (20)

C. Energy conservation

The conservation of energy in its thermodynamic form tells us that if we follow a fluid parcel along its world line:

dρ

dn
=

ρ + p

n
. (21)

The proof of the thermodynamic relations from conservation of the stress-energy tensor is on the homework and I
assume you’ve done that problem already. So this means that

∆ρ =
ρo + po

no

∆n. (22)

Thus, in analogy to our pressure equation:

δρ = −(ρo + po)[r
−2e−Λo(r2eΛoξ)′ + δΛ] − ρ′oξ. (23)
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D. Einstein equations

We are now interested in the Einstein equations. We write these in terms of the orthonormal basis vectors,

et̂ = e−Φ
et, er̂ = e−Λ

er, e
θ̂

=
1

r
eθ, and e

φ̂
=

1

r sin θ
eφ. (24)

There are 4 nontrivial components – the t̂t̂, t̂r̂, r̂r̂, and θ̂θ̂ components (the φ̂φ̂ part is equivalent to θ̂θ̂ by symmetry).
However with the help of stress-energy conservation, we only need two. We choose Gr̂r̂ and Gt̂t̂. [Note: MTW uses
Gr̂r̂ and Gr̂t̂, but the choice here requires fewer computations.]

Now at this stage you are probably suspecting that for general time-dependent Φ and Λ the Einstein tensor must
be horribly complicated. Fortunately, this is not the case. The reason depends on the fact that the Einstein tensor
components, because of the way they are constructed from Christoffel symbols, have no more than two derivatives of
the metric in any term (one can have terms linear in gµν,αβ and terms quadratic in gµν,α).

1. The Gr̂r̂ equation

Let’s consider Gr̂r̂ first. We already know the answer for time-independent Φ and Λ:

Gr̂r̂|static = 2r−1e−2ΛΦ′ + r−2(e−2Λ − 1). (25)

Allowing these to be time-dependent, one has the possibility of new terms (i) linear in Φ̈ or Λ̈; (ii) quadratic in Φ̇

and Λ̇; or (iii) linear in Φ̇ or Λ̇ and possibly a spatial derivative. Of these, (ii) can be neglected in linear perturbation
theory, and (iii) cannot contribute to Gr̂r̂ because they flip sign under t → −t whereas Gr̂r̂ is unaffected.

It turns out there can also be no terms in Gr̂r̂ linear in Φ̈, since if we take a perturbation of the form δΦ(t, r) = δΦ(t)
(i.e. r-independent) this is equivalent to a redefinition of the time coordinate, which leaves the spacetime and the

vector er̂ unchanged and hence implies no change in Gr̂r̂. One is thus left only with the possibility of a Λ̈ term as the
only legal modification to Eq. (25):

Gr̂r̂ = 2r−1e−2ΛΦ′ + r−2(e−2Λ − 1) + f1(r, Λ, Φ)Λ̈. (26)

We thus need only determine the coefficient f1(r, Λ, Φ) of the Λ̈ term. To do this, we recall the general rule:

Gr̂r̂ = Rr̂r̂ −
1

2
(−Rt̂t̂ + Rr̂r̂ + R

θ̂θ̂
+ R

φ̂φ̂
)

=
1

2
(Rt̂t̂ + Rr̂r̂ − R

θ̂θ̂
− R

φ̂φ̂
)

=
1

2
(Rr̂

t̂r̂t̂ + Rθ̂
t̂θ̂t̂

+ Rφ̂
t̂φ̂t̂

+ Rt̂
r̂t̂r̂ + Rθ̂

r̂θ̂r̂
+ Rφ̂

r̂φ̂r̂
− Rt̂

θ̂t̂θ̂
− Rr̂

θ̂r̂θ̂
− Rφ̂

θ̂φ̂θ̂
− Rt̂

φ̂t̂φ̂
− Rr̂

φ̂r̂φ̂
− Rθ̂

φ̂θ̂φ̂
)

= Rθ̂
t̂θ̂t̂

+ Rφ̂
t̂φ̂t̂

− Rθ̂
φ̂θ̂φ̂

. (27)

Now when constructing the Riemann tensor for a diagonal metric, terms involving Λ̈ can only be associated with a
particular second derivative term in the metric, grr,tt, which can only show up in Riemann tensor components with

indices that are some permutation of rrtt. No such terms appear in the above, so the coefficient of Λ̈ is zero, and we
find:

Gr̂r̂ = 2r−1e−2ΛΦ′ + r−2(e−2Λ − 1). (28)

The r̂r̂ component of the stress-energy tensor is

Tr̂r̂ = p + (ρ + p)ur̂ur̂ = p + h.o.t. (29)

so we find

2r−1e−2ΛΦ′ + r−2(e−2Λ − 1) = 8πp. (30)

Taking the variation and using Eq. (20) gives

2r−1e−2Λo(δΦ′ − 2Φ′

oδΛ) − 2r−2e−2ΛoδΛ = −8πΓ1po[r
−2e−Λo(r2eΛoξ)′ + δΛ] − 8πp′oξ. (31)
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2. The G
t̂t̂

equation

The same symmetry-based logic that we applied to Gr̂r̂ also applies to Gt̂t̂. We immediately find:

Gt̂t̂ = 2r−1e−2ΛΛ′ − r−2(e−2Λ − 1) + f2(r, Λ, Φ)Λ̈. (32)

We can find the Λ̈ term using the equation analogous to Eq. (27):

Gt̂t̂ = Rθ̂
r̂θ̂r̂

+ Rφ̂
r̂φ̂r̂

+ Rθ̂
φ̂θ̂φ̂

. (33)

Since there is no appearance of a permutation of rrtt, Λ̈ cannot enter into Gt̂t̂ and so f2 = 0. Therefore this Einstein
equation is

2r−1e−2ΛΛ′ − r−2(e−2Λ − 1) = 8πρ. (34)

Perturbing, and using Eq. (23), we find

2r−1e−2Λo(δΛ′ − 2Λ′

oδΛ) + 2r−2e−2ΛoδΛ = −8π(ρo + po)[r
−2e−Λo(r2eΛoξ)′ + δΛ] − 8πρ′oξ. (35)

It is convenient to move all of the δΛ terms to one side and the ξ terms to the other. Then multiplication by 1
2
re2Λo

enables us to isolate the δΛ′ term on the left-hand side:

δΛ′ − 2Λ′

oδΛ + r−1δΛ + 4π(ρo + po)re
2ΛoδΛ = −4π(ρo + po)r

−1eΛo(r2eΛoξ)′ − 4πrρ′oe
2Λoξ. (36)

To simplify Eq. (36), we consider the function

f = Λo + Φo → f ′ = Λ′

o + Φ′

o = 4πr(ρo + po)e
2Λo . (37)

Then the left-hand side simplifies to

δΛ′ +

[

d

dr
ln(re−2Λo+f )

]

δΛ = r−1eΛo−Φo [reΦo−ΛoδΛ]′. (38)

We therefore have

[reΦo−ΛoδΛ]′ = −4π(ρo + po)e
Φo(r2eΛoξ)′ − 4πr2ρ′oe

Φo+Λoξ

= 4πeΦo+Λo [−(ρo + po)r
2ξ′ − (ρo + po)r

2Λ′

oξ − 2(ρo + po)rξ − r2ρ′oξ]. (39)

But as a point of comparison, we see that

(reΦo−Λof ′ξ)′ = 4πeΦo+Λo [r2(ρo + po)ξ
′ + 2r(ρo + po)ξ + r2(ρo + po)(Φ

′

o + Λ′

o)ξ + r2ρ′oξ + r2p′oξ]

= 4πeΦo+Λo [r2(ρo + po)ξ
′ + 2r(ρo + po)ξ + r2(ρo + po)(Φ

′

o + Λ′

o)ξ + r2ρ′oξ − r2(ρo + po)Φ
′

oξ].(40)

By inspection this is the opposite of Eq. (39) so

[reΦo−ΛoδΛ]′ = −[reΦo−Λof ′ξ]′. (41)

At r = 0 both of the objects in brackets are zero, so they are always equal to each other and:

δΛ = −f ′ξ = −4πr(ρo + po)e
2Λoξ. (42)

This is the most practical form of the tt Einstein equation.

3. Solution for δΦ′

It follows from Eq. (42) that

Φ′

oδΛ = 4πrp′oe
2Λoξ. (43)

Then Eq. (31) yields

2r−1e−2ΛoδΦ′ − 2r−2e−2ΛoδΛ = −8πΓ1po[r
−2e−Λo(r2eΛoξ)′ + δΛ] + 8πp′oξ, (44)

and substituting Eq. (42) we conclude that

δΦ′ = −4π(ρo + po)e
2Λoξ − 4πΓ1rpoe

2Λo [r−2e−Λo(r2eΛoξ)′ − (Λ′

o + Φ′

o)ξ] + 4πre2Λop′oξ. (45)

Collecting terms gives

δΦ′ = −4πΓ1r
−1poe

2Λo+Φo(r2e−Φoξ)′ + 4π(rp′o − ρo − po)e
2Λoξ. (46)
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E. Momentum conservation

We finally consider the momentum conservation law, in the form of the radial component of Tµ
ν
;ν = 0. Using the

perfect fluid form

Tµ
ν = pδν

µ + (ρ + p)uµuν , (47)

we find that

p,µ + (ρ + p),νuµuν + (ρ + p)aµ + (ρ + p)uµuν
;ν = 0, (48)

where the fluid 4-acceleration aµ = uνuµ;ν . Considering the r-component of this equation, we find that to first order
the second and fourth terms both vanish (ur is 1st order and both uν

;ν and uν(ρ + p),ν must be 1st order since they
vanish in the unperturbed configuration), so we are left with

p′ + (ρ + p)ar = 0, (49)

or raising the index on a:

p′ + (ρ + p)e2Λar = 0. (50)

It only remains to find ar. This can be obtained by following a fluid parcel:

ar =
d2r

dτ2
+ Γr

αβuαuβ (51)

Now we have d2r/dτ2 = d2ξ/dτ2, and since ξ is already 1st-order we may use the background relation d/dτ = e−Φo∂/∂t
to set

d2r

dτ2
= e−2Φo ξ̈. (52)

For the second term, the unperturbed value of uα is (e−Φo , 0, 0, 0) so we may use the unperturbed value Γr
rt = 0 for

the αβ = rt term. Moreover, the perturbed ut is still e−Φ to first order. Thus:

ar = e−2Φo ξ̈ + Γr
tte

−2Φ. (53)

We finally have

Γr
tt = −

1

2
e−2Λ[−e2Φ]′ = e2Φ−2ΛΦ′, (54)

so

ar = e−2Φo ξ̈ + e−2ΛΦ′. (55)

Substituting into Eq. (50) gives

p′ + (ρ + p)e2Λ−2Φo ξ̈ + (ρ + p)Φ′ = 0. (56)

The linear perturbation of this equation gives

δp′ + (ρo + po)e
2Λo−2Φo ξ̈ + (ρo + po)δΦ

′ + (δρ + δp)Φ′

o = 0. (57)

Equation (57) is the evolution equation for ξ. It is second-order, and depends only on the metric and fluid
perturbations, which we have seen are all expressible in terms of ξ. Therefore it is a 2nd order (in time) PDE for ξ.

F. Completion of the equation of motion

It remains for us to understand the structure of the equation of motion for the star. This means we must simplify
Eq. (57). We begin by noting that

r−2e−Λo(r2eΛoξ)′ + δΛ = r−2e−Λo(r2eΛoξ)′ − (Λ′

o + Φ′

o)ξ = r−2eΦo(r2e−Φoξ)′, (58)
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so that

δρ = −(ρo + po)r
−2eΦo(r2e−Φoξ)′ − ρ′oξ and δp = −Γ1por

−2eΦo(r2e−Φoξ)′ − p′oξ. (59)

We define

ζ ≡ r2e−Φoξ (60)

and substitute into Eq. (57):

0 = [−Γ1por
−2eΦoζ′ − r−2p′oe

Φoζ]′ + r−2(ρo + po)e
2Λo−Φo ζ̈

+(ρo + po)[−4πΓ1r
−1poe

2Λo+Φoζ′ + 4π(rp′o − ρo − po)e
2Λo+Φor−2ζ]

+[−(ρo + po + Γ1po)r
−2eΦoζ′ − (ρ′o + p′o)r

−2eΦoζ]Φ′

o. (61)

A further multiplication by eΛo+2Φo reduces this to the form

0 = Wζ̈ − (Pζ′)′ − Qζ, (62)

where

W = r−2(ρo + po)e
3Λo−Φo ,

P = Γ1por
−2eΛo+3Φo , and

Q = eΛo+3Φo

[

(p′o)
2

ρo + po

r−2 − 4p′or
−3 − 8π(ρo + po)por

−2e2Λo

]

. (63)

Note that W , P , and Q are properties of the background and not perturbations.
Here we have used p′o = −(ρo + po)Φ

′

o and 4π(ρo + po)re
2Λo = Λ′

o + Φ′

o to simplify the ζ′ terms, and similar
manipulations to simplify Q.

We can thus see the nature of the problem: radial perturbations are described by a wave equation for ζ, with radial
coordinate velocity given by

c2
r =

P

W
=

Γ1po

ρo + po

e2Φo−2Λo = c2
se

2Φo−2Λo , (64)

where c2
s = dp/dρ|s is the conventional adiabatic sound speed.

G. Boundary conditions

No problem is complete without boundary conditions. A wave equation needs two such conditions, one at the inner
limit (r = 0) and one at the outer limit (r = R).

We require that the distortion at the center be finite:

lim
r→0+

ζ

r
= finite (65)

(zero is allowed but not common). For the outer boundary condition, we require the pressure to remain zero, i.e.
∆p = 0 or

lim
r→R−

(Γ1p0ζ
′) = 0. (66)

IV. STABILITY AND EIGENMODES

The wave equation, Eq. (62), with boundary conditions is a self-adjoint problem and hence admits a complete set
of eigenmodes. That is, the solution is a superposition of solutions of the form

ζ(t, r) = ζ(0, r)eiσt, (67)
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where −σ is the oscillation frequency. (The use of σ is standard in stellar oscillation theory.) The corresponding
eigenvalue problem is

σ2Wζ = −(Pζ′)′ − Qζ. (68)

For stable matter (Γ1 > 0) the “kinetic” term P is positive everywhere. It is also true that Q is positive everywhere;
this is more obvious if we substitute the TOV equation in Eq. (63), yielding

Q = eΛ+3Φ

[

p′2

r2(ρ + p)
+ 4

(ρ + p)(m + 2πr3p)

r4(r − 2m)

]

. (69)

Equation (68) for the eigenfrequencies of the star is most easily thought of as like the problem of determining
quantum energy levels in a 1D potential using the Schrödinger equation: the difference is that if σ2 is the energy then
the kinetic-like term is positive definite but the potential energy term is negative definite. The problem therefore has
a “ground state” (minimum σ2 mode; breathing mode, ζ has the same sign everywhere) and an infinite hierarchy of
modes with successively more radial nodes.

If the perturbation problem admits a negative σ2 mode then the star is unstable: a slight perturbation causes it to
grow or shrink at an ever-expanding rate. One does not expect to find such a star in nature.

A. Variational principle

A common method to understand the stability of a star analytically is to use the variational principle. This says
that the eigensolutions for Eq. (68) are systems for which the functional

E [ζ] ≡

∫ R

0
(Pζ′2 − Qζ2) dr
∫ R

0
Wζ2 dr

(70)

is stationary with respect to small perturbations δζ (prove this!), and that the value of E [ζ] is σ2. The minimum
value of the energy functional over all ζ is the “ground state” (least stable or lowest-frequency mode). We therefore
have that

stability ↔ E [ζ] > 0 ∀ ζ(r). (71)

[Such principles exist for most stability arguments, even in Newtonian physics.]


