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I. OVERVIEW

Our next objective is to consider the motion of test particles exterior to a spherical star (or around a black hole),
i.e. in the Schwarzschild spacetime. We are interested in both massive particles (e.g. Mercury orbiting the Sun, or a
neutron star orbiting a supermassive black hole), and in massless particles (light rays carrying information from an
astrophysical object).

The reading for this lecture is:

• MTW Ch. 25.

II. THE PROBLEM

We begin with the metric:

ds2 = −
(

1 − 2
M

r

)

dt2 +
dr2

1 − 2M/r
+ r2(dθ2 + sin2 θ dφ2). (1)

Without loss of generality, it is permissible to assume the particle orbits in the equatorial plane, θ = π/2. In this
case, we only need the 2+1 dimensional equatorial slice E ⊂ M of the metric:

ds2 = −
(

1 − 2
M

r

)

dt2 +
dr2

1 − 2M/r
+ r2 dφ2. (2)

The particle’s momentum p has 3 nontrivial components, and fortunately has three conserved quantities: the time-
translation and rotation (longitude invariance or J3 Killing field) imply that pt and pφ are conserved. Furthermore,
the magnitude of the 4-momentum is conserved, p · p = −µ2. The existence of 3 conserved quantities implies that
the motion of the test particle is integrable.

III. MOTION OF MASSIVE PARTICLES

Let us first consider the motion of a massive particle. We may then define the specific energy Ẽ and specific angular

momentum L̃ to be the conserved quantities per unit mass associated with the two symmetries:

Ẽ = −ut = −pt

µ
and L̃ = uφ =

pφ

µ
. (3)

For a particle at rest far from the star (r → ∞), Ẽ → 1.

A. The 4-velocity

Using the inverse metric components,

gtt = − 1

1 − 2M/r
, grr = 1 − 2

M

r
, and gφφ = r−2, (4)
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we use gµνuµuν = −1 to see that

− (ut)
2

1 − 2M/r
+

(

1 − 2
M

r

)

(ur)
2 +

(uφ)2

r2
= −1. (5)

We may then solve for ur as a function of r:

(ur)
2 =

1

1 − 2M/r

(

−1 +
Ẽ2

1 − 2M/r
− L̃2

r2

)

; (6)

except that we can’t determine the sign (we don’t know whether the particle is moving inward or outward). It is
common also to compute the 4-velocity components with contravariant indices, since these are most closely related
to the actual trajectory: dxµ/dτ = uµ. These are:

ut =
Ẽ

1 − 2M/r
,

ur = ±

√

√

√

√

(

1 − 2
M

r

)

(

−1 +
Ẽ2

1 − 2M/r
− L̃2

r2

)

, and

uφ =
L̃

r2
. (7)

B. Range of radial motion

Before solving for the actual trajectory, we consider the legal range of radii and the implications for the global
structure of the trajectory. It is required that the square root in Eq. (7) have a semipositive argument:

−1 +
Ẽ2

1 − 2M/r
− L̃2

r2
≥ 0. (8)

At the radii where equality holds, the particle’s radial velocity is zero; this occurs at the periastron or apastron (closest
or farthest points of the orbit). If we define the effective potential in analogy to the Newtonian central force problem:

Ṽ 2(r) =

(

1 − 2
M

r

)

(

1 +
L̃2

r2

)

= 1 − 2
M

r
+

L̃2

r2
− 2

ML̃2

r3
, (9)

then our requirement is that

Ẽ2 ≥ Ṽ 2(r). (10)

In our case, for particles moving forward in time we have Ẽ > 0, so really we could write the requirement as

Ẽ ≥ Ṽ (r). (11)

Therefore the range of radial motion is set by the effective potential and the energy. At large distances from the star,
in the Newtonian limit, the effective potential becomes

Ṽ (r) ≈ VKepler(r) = 1 − M

r
+

L̃2

2r2
, (12)

and the usual rules hold: there is a minimum of the potential (except for radial orbits); particles oscillating in this

minimum orbit the star between fixed periastron and apastron distances; and if Ẽ ≥ 1 the orbit is unbound (parabolic
or hyperbolic).

What about in GR? Here instead of the Newtonian limit of Ṽ (r) increasing without bound as r → 0, the effective

potential must turn around and reach zero at r = 2M . It can’t wiggle around too many times though: Ṽ 2(r) is a
cubic polynomial in 1/r, so one distinguishes three possibilities:
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• The effective potential may rise from Ṽ (2M) = 0 to a maximum, then decline to a minimum and then rise again

to Ṽ (∞) = 1.

• The effective potential may rise monotonically.

• A limiting case where the effective potential has a simultaneous stationary and inflection point, i.e. it is
monotonic but there is a point ri where Ṽ ′(ri) = 0 and Ṽ ′′(ri) = 0.

We may distinguish these cases by searching for the extremal points where dṼ /dr = 0. That is equivalent to asking
for

0 =
1

2

d[Ṽ 2(r)]

d[1/r]
=

M

r2
− L̃2

r3
+ 3

ML̃2

r4
. (13)

This is a quadratic equation in 1/r, with solutions

1

r
=

L̃ ∓
√

L̃2 − 12M2

6ML̃
. (14)

Here the + sign corresponds to the larger value of r (the minimum of Ṽ ) and the − sign to the smaller value of r (the

maximum of Ṽ ).

The three cases are distinguished by how L̃ compares to the critical value L̃c = 2
√

3M :

• If L̃ > L̃c, then the effective potential contains a minimum and maximum.

• If L̃ < L̃c, then the effective potential is monotonic. In this case there are no stable bound orbits!

• If L̃ = L̃c, then the effective potential is instantaneously flat at r = r+ = r− = 6M .

C. Circular orbits

We next consider the simplest orbits around a spherical object – the circular orbits. These lie at a minimum of the
effective potential. They may be parameterized by either their specific angular momentum or their radius coordinate
r; we take the latter choice. In order for the orbit to be circular, we have dṼ /dr = 0, or equivalently Eq. (13) is
satisfied. Thus algebraically we find

L̃ =

√

Mr2

r − 3M
. (15)

The corresponding specific energy of the circular orbit is

Ẽ = Ṽ (r) =

√

(

1 − 2
M

r

)(

1 +
Mr2/(r − 3M)

r2

)

=
r − 2M

√

r(r − 3M)
. (16)

At large radii these reduce to the Keplerian expressions
√

Mr and 1 − M/(2r), respectively.
The orbital period of the test particle, as seen by an observer far from the hole, is the (Schwarzschild coordinate)

time required for the particle to complete one lap, i.e.

T =
2π

Ω
=

2π

dφ/dt
. (17)

This orbital frequency is

Ω =
uφ

ut
=

L̃/r2

Ẽ/(1 − 2M/r)
=

√

M/(r − 3M)/r

r/
√

r(r − 3M)
=

M1/2

r3/2
. (18)

This is actually identical to the Keplerian result! The agreement is however not physically meaningful since r represents
merely a radial coordinate.

The actual behavior of circular orbits at small radii is however very different from the Keplerian result. Recall that
in order to have a stable circular orbit, we must be at a minimum of the effective potential. However we see from
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Eq. (14) that the minima of Ṽ are always at r > 6M and the maxima are at r < 6M . Therefore, we see that there is
an innermost stable circular orbit (ISCO) at r = 6M . Its specific energy and angular momentum are

Ẽ(rISCO) =
2
√

2

3
and L̃(rISCO) = 2

√
3. (19)

Outside the ISCO, one has the usual behavior: small perturbations on the orbit lead to small radial oscillations,
and moreover the inner orbits have lower energy and angular momentum than the outer orbits, i.e. dL̃/dr > 0 and

dẼ/dr > 0.
Inside the ISCO, strange behaviors occur. In addition to such orbits being unstable to radial perturbations, and

hence of little direct astrophysical interest, one has dL̃/dr < 0 and dẼ/dr < 0. In fact at r = 4M , the energy of the
circular orbit reaches 1: inside this radius, a small perturbation on a circular orbit leads to not just an instability, but
(if the perturbation is outward) the test particle escaping to ∞! This is called the marginally bound orbit. Finally at
r = 3M , the specific energy and angular momentum become infinite. Such an orbit is allowed only by setting µ = 0
and hence the r = 3M radius is called the photon sphere. At the photon sphere, light can orbit the star (assuming
R < 3M or it has become a black hole), but of course such trajectories are unstable. At r < 3M there are no circular
orbits at all.

The ISCO is very important in the study of astrophysical accretion disks around black holes, since for thin, zero-
pressure disks the gas parcels are on near-circular orbits and the ISCO then represents the inner edge.

IV. APPLICATION: PERIHELION PRECESSION

We now turn our attention to more general motions of massive test particles, which have both radial and angular
motion. An obvious question is whether the orbit closes: does a particle follow the same closed loop around a star
in GR on orbit after orbit, as occurs with Kepler’s ellipses? To answer this question, we need to know the angular
advance of the particle during a radial cycle. That is, we find its trajectory φ(r) by using

dφ

dr
=

uφ

ur
, (20)

and then integrate over a radial cycle:

∆φ =

∮

dφ

dr
dr. (21)

Explicitly, we have

∆φ =

∮

± L̃/r2

√

Ẽ2 − (1 − 2M/r)(1 + L̃2/r2)
dr. (22)

This equation is simplified if we substitute υ = 1/r, in which case

∆φ =

∮

± L̃
√

Ẽ2 − (1 − 2Mυ)(1 + L̃2υ2)
dυ. (23)

The exact result for Eq. (23) contains elliptic integrals and we will not solve it in class. We will however solve the
case where the radial perturbations are small: that is, where we are near the minimum υ0 = 1/r0 of the effective
potential (near a circular orbit). Then the specific angular momentum is related to the minimum via the usual relation

L̃2 =
Mr2

0

r0 − 3M
=

M

υ0(1 − 3Mυ0)
. (24)

The specific energy now must exceed Ṽ (r0) in order for the particle to oscillate around the minimum: we suppose it
does so by an amount ǫ:

Ẽ2 = Ṽ 2(r0) + ǫ =
(1 − 2Mυ0)

2

1 − 3Mυ0

+ ǫ. (25)
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We now take υ = υ0 + δ, and consider the argument of the square root in Eq. (23). We recall that since

Ṽ 2(υ) = (1 − 2Mυ)(1 + L̃2υ2) (26)

is a cubic and we are expanding around the minimum, the Taylor expansion is

Ṽ 2(υ) = Ṽ 2(υ0) + L̃2(1 − 6Mυ0)δ
2 − 2ML̃2δ3. (27)

For small radial oscillations we neglect the cubic term in the potential, leading to the following simplification of
Eq. (23):

∆φ =

∮

± L̃
√

ǫ − L̃2(1 − 6Mυ0)δ2

dδ. (28)

Now to simplify this further we need to understand the range of the radial perturbation variable δ. It oscillates
between the limits at which ur = 0, i.e. where the argument of the square root is zero:

|δ| < δmax =

√

ǫ

L̃2(1 − 6Mυ0)
. (29)

We thus set

δ = δmax cos ζ, (30)

so that a full cycle of radial oscillation corresponds to incrementing ζ by 2π. Correspondingly, we choose the + sign
in Eq. (28) for half of the oscillation and the − sign for the other half. We then have

∆φ =

∫ 2π

0

∓ L̃
√

ǫ − ǫ cos2 ζ
δmax sin ζ dζ =

L̃δmax√
ǫ

∫ 2π

0

dζ = 2π
L̃δmax√

ǫ
. (31)

Using our expression for δmax, this leads to

∆φ =
2π√

1 − 6Mυ0

=
2π

√

1 − 6M/r0

. (32)

The orbit of the test particle very nearly closes if r0 is large. However there is an excess advance of the perihelion
per orbit given by:

Ψ = ∆φ − 2π = 2π

(

1
√

1 − 6M/r0

− 1

)

≈ 6πM

r0

. (33)

This is positive, indicating that the perihelion moves forward. In the case of the innermost planet Mercury around
the Sun, we have

Ψ =
6πGM⊙

c2r0

=
6π(6.672 × 10−8 cm3 g−1 s−2)(2 × 1033 g)

(3 × 1010 cm s−1)2(5.8 × 1012 cm)
= 4.8 × 10−7 rad = 0.10 arcsec. (34)

This is a tiny angle, but it builds up each orbit (every 88 Earth-days in the case of Mercury). Over the course of a
century, Mercury’s orbit thus advances by 40 arcsec due to relativistic effects. Thanks to Mercury’s high eccentricity
(e = 0.2), this angle was large enough for astronomers to observe even in the 19th century, thus making it the first
manifestation of GR to be discovered, and the only one known prior to the formulation of the theory.

[There is a contribution a factor of a few larger due to the gravitational perturbations from the other planets; but
since the masses of e.g. Venus, Earth, and Jupiter are known, these could be removed and the residuals discovered.]


