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I. OVERVIEW

We now begin our consideration of spherically symmetric spacetimes, of which relativistic stars and Schwarzschild
black holes will be our principal examples. First on our agenda will be spherical stars. We consider the metric
structure in this lecture, and then the equations of structure in the next lecture.

The reading for this lecture is:

• MTW Ch. 24.

II. SPHERICAL SYMMETRY

We begin our investigation with the case of spherical symmetry. Recall that this is defined by the existence of
Killing vector fields {Ji}

3
i=1

satisfying

[Ji, Jj ] = −ǫijkJk. (1)

[Recall that here the i index denotes which vector, not a component.]
Our first task is to learn something about the vector fields Ji. We build up this knowledge in stages.

A. Preliminary considerations

We begin by noting that for any Killing vector field ξ, it is possible to define a finite symmetry operation Gξ :
M → M by taking the differential equation

dA(s)

ds
= ξ[A(s)], (2)

initializing it at A(sinitial = 0) = P , and setting Gξ(P) = A(sfinal = 1). That this operation is a symmetry of the
spacetime follows directly from differentiating the metric tensor gµν on the final manifold with respect to s, and
obtaining Lξgµν = 0. For a trivial example, we see that if ξ is the time-translation Killing field of Minkowski space,
then the finite symmetry operation Gcξ increments the time by c; hence it is appropriate to consider this a finite
symmetry operation.

We now consider a point P in a spherically symmetric spacetime and consider the submanifold S(P) ⊂ M that is
reachable by finite symmetry operations using the {Ji}. This submanifold is the set of points that are “equivalent”
to P because of the symmetry. We expect it to be a sphere, although there are some subtleties.

It is not immediately obvious what is the dimension of this submanifold (called an orbit) for a generic point P .
Clearly the vectors {Ji}

3
i=1

must be tangent to this submanifold, since for any of the Ji the points GcJi
(P) form a

curve in S(P) and the tangent vector to that curve is Ji. So one may immediately conclude that:

• Since at least one of the Ji must be nonzero at a generic point (remember it is a basis Killing field), then for a
generic point S(P) has dimension at least 1.

• But the dimension of S(P) cannot generically be 1 since then we would have to have J1, J2, and J3 all parallel –
they must be tangent to the 1D curve S(P). Then one can choose one of these (say J3) to be nonzero somewhere,
and then construct a coordinate system in which J3 has contravariant components (J3)

α = (0, 0, 0, 1). We then
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have (J1)
α = (0, 0, 0, a) and (J2)

α = (0, 0, 0, b) for some functions a and b. The three commutation relations
Eq. (1) then imply

ab,3 − ba,3 = −1, − b,3 = −a, and a,3 = −b. (3)

This implies a2 + b2 = −1, so not possible for real fields.

Therefore the generic dimension of S(P) is at least 2. We will proceed on this assumption for now. Cases with
dimension 3 or more are in fact more symmetrical spacetimes, and we will come back to them later; they can always
be reduced to the form below by an appropriate choice of fields. [1]

B. Killing vectors for the case of orbits of dimension 2

If the orbit S(P) has dimension 2, then the vectors J1, J2, and J3 are in the 2-dimensional tangent space to S(P).
Therefore they are linearly dependent, and at any point P there are numbers {ci}3

i=1 such that

ci(P)Ji(P) = 0. (4)

[Remember: here i is not an index, it denotes which number.] By normalizing the c’s to have the sum of their squares
equal to 1, we may write

sin θ cosφJ1 + sin θ sin φJ2 + cos θ J3 = 0. (5)

Here θ and φ are functions of P that are defined up to an overall sign degeneracy in most places (i.e. one may take
θ → π − θ and φ → φ + π and the above equation is still valid). We make a continuous choice of such functions and
will treat them as two of our coordinates. It takes two more coordinates (let us call them x0 and x1) to describe
which of the 2-dimensional manifolds a point is on. So our coordinate system is (x0, x1, θ, φ).

Conceptually, what we have done is to define a 2-dimensional shell S(P) indexed by (x0, x1), and constructed
the angular coordinates (θ, φ) by which combination of rotations does not move that point (since it is the rotation
operations that we have taken as fundamental).

Now since the Ji are tangent to the shell, we have (Ji)
0 = (Ji)

1 = 0 – i.e. if a point moves with velocity given by
a Ji, its x0 and x1 coordinates do not change.

It is possible at this stage to completely compute the components of all the Ji. Consider e.g. J3. Recall that the
Lie derivative of a coordinate is a component, e.g. LJ3

θ = (J3)
θ; and that the commutation rule gives LJ3

J1 = −J2,
etc. Then taking the LJ3

derivative of Eq. (5) gives

[cos θ cosφ (J3)
θ−sin θ sin φ (J3)

φ]J1−sin θ cosφJ2+[cos θ sin φ (J3)
θ+sin θ cosφ (J3)

φ]J2+sin θ sinφJ1−sin θ (J3)
θ J3 = 0.

(6)
Now substituting for J3 using Eq. (5) gives

[cos θ cosφ (J3)
θ − sin θ sin φ (J3)

φ + sin θ sin φ + sin θ tan θ cosφ (J3)
θ]J1

+[cos θ sin φ (J3)
θ + sin θ cosφ (J3)

φ − sin θ cosφ + sin θ tan θ sin φ (J3)
θ]J2 = 0. (7)

Since J1 and J2 are generically linearly independent, both of the objects in brackets must be zero, which leads to
(J3)

θ = 0 and (J3)
φ = 1. Thus (J3)

α = (0, 0, 0, 1).
The calculation for J1 and J2 is similar but messier; it leads to

(J1)
α = (0, 0,− sinφ,− cot θ cosφ) and (J2)

α = (0, 0, cosφ,− cot θ sin φ). (8)

C. The metric tensor

We may now find the metric tensor components gµν in our chosen coordinate system. Clearly they are independent
of φ. Moreover, at φ = 0 we find that

0 = LJ2
gµν = gµν,θ − gµα(J2)

α
,ν − gνα(J2)

α
,µ. (9)

The µν = 00, 01, and 11 components immediately establish that g00, g01, and g11 are independent of θ.
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At φ = 0 the corresponding equation for LJ1
gµν reads

0 = LJ1
gµν = −gµα(J1)

α
,ν − gνα(J1)

α
,µ. (10)

The 03 component of this equation reads 0 = g02. The 02 component however reads 0 = −g03∂θ(− cot θ), and hence
g03 = 0. Similar arguments show g12 = g13 = 0.

It remains to find g22, g23, and g33. The 22 and 23 components of Eq. (10) yield

0 = −2g23∂θ(− cot θ) and 0 = g22 − g33∂θ(− cot θ). (11)

The first establishes g23 = 0 and the second establishes g22 = g33 csc2 θ or equivalently g33 = g22 sin2 θ. Moreover, the
22 component of Eq. (9) combined with our knowledge now that g23 = 0 gives 0 = g22,θ. Thus g22 is a function only
of x0 and x1; we denote it by r2.

The overall metric is then of the form

ds2 = g00(dx0)2 + 2g01dx0dx1 + g11(dx1)2 + r2(dθ2 + sin2 θ dφ2), (12)

where g00, g01, g11, and r2 are functions of (x0, x1) only. This metric coincides with our intuitive notion of “spherical
symmetry:” it is composed of many spheres of circumference 2πr, labeled by (x0, x1) and stitched together in such a
way that there is no preferred direction on the sphere.

[Note: We have not yet established the global structure of the spacetime, or the range of θ and φ. For example,
S(P) looks locally like a 2-sphere, as we can see above, but nothing prevents it from alternatively having the topology
of e.g. the space RP 2 obtained by identifying antipodal points. “Spherical” stars or black holes of this type are not
astrophysically relevant since they do not approach Minkowski-like geometry at large distances and hence such an
object probably can’t form. But this is not an issue one would find from purely local considerations such as those
here.]

D. What about more symmetrical spacetimes?

The above considerations are not appropriate if S(P) has dimension 3, in which case there is no linear dependence
such as Eq. (5). One might wonder if Eq. (12) applies in these cases. In fact it does – the basic reason is that such
spacetimes are actually more symmetrical than spherical symmetry implies. One can use this to construct even more
Killing fields, and then find a subspace of Killing fields satisfying Eq. (5). You will do this on the homework.

E. Reduction of the form of the metric

Equation (12) is in fact an overly general form for the metric, since we have treated x0 and x1 as arbitrary labels of
the spheres consisting of “equivalent” points. We now impose a gauge transformation to simplify the form. To begin
with, if r is not constant (the generic case), we may use it as one of our coordinates and denote the other coordinate
by t. Then we have

ds2 = gttdt2 + 2grtdr dt + grrdr2 + r2(dθ2 + sin2 θ dφ2). (13)

Even this is too general – it is possible to use the remaining degree of freedom in defining “t” to eliminate grt – but
we won’t do this yet.

III. SPHERICALLY SYMMETRIC, TIME-STATIONARY SPACETIMES

We will now move on to spacetimes that are also time-stationary, i.e. possess a timelike Killing field ξ that commutes
with the Ji, i.e. LJi

ξ = 0. Considerations similar to those used above for the metric enable us to show that the
components ξα are nonzero only for α = t, r and that they are independent of θ and φ. Moreover, even the ξr

component must vanish, since gθθ = r2 implies that

0 = Lξgθθ = 2rξr . (14)

So we have ξα 6= 0 only for α = t. A rescaling of t (i.e. choosing a new t′ =
∫

dt/ξt and then dropping the primes)
sets ξt = 1. Then all components in Eq. (13) depend only on r.
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Our final step in building the time-stationary metric is to eliminate grt. This can be done without upsetting
ξα = (1, 0, 0, 0) by defining

t′ = t + f(r) ↔ t = t′ − f(r). (15)

Then in the primed system we have

grt′ =
∂xα

∂r

∂xβ

∂t′
gαβ = grt − f(r)gtt. (16)

So in the generic case, where gtt 6= 0, it is possible to choose f(r) so as to eliminate grt. Then the metric takes the
remarkably simple form

ds2 = gttdt2 + grrdr2 + r2(dθ2 + sin2 θ dφ2). (17)

This is more often written as

ds2 = −e2Φdt2 + e2Λdr2 + r2(dθ2 + sin2 θ dφ2), (18)

where Φ(r) and Λ(r) are arbitrary functions of r. Equation (18) is what we will use in our study of spherical stars.

[1] They are not of simply academic interest: the closed universe is an example.


