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I. OVERVIEW

Our principal concern this term will be symmetrical solutions of Einstein’s equations that are of astrophysical
relevance. These are relativistic stars, white dwarfs and neutron stars, which we will approximate as spherical; black

holes, the ultimate endpoint of evolution for some massive stars in addition to being found in the centers of galaxies;
and the Universe itself.

Before we study these solutions, it is worth a digression to examine the role of symmetry in GR. We will consider
here the case of spacetimes with continuous symmetries. (We won’t investigate discrete symmetries in any formal way
in this class, although we will use some of their intuitive properties later.) We will need to do this both to define a
spherically symmetric object, and later on to study its perturbations.

The (optional) reading for this lecture is:

• MTW §25.2.

II. SOME PRELIMINARIES

Suppose we want to consider a system that is “time-independent” (or “time translation invariant” or stationary). In
Newtonian physics or even in SR, it is clear what this means: one can choose a reference frame in which all quantities
depend only on xi and not on t, e.g. the density is ρ(xi, t) = ρ(xi). But in GR the coordinates are free for us to
choose, so we cannot simply transfer over this definition. In linearized GR, we circumvented the problem by making
reference to the Minkowski background around which we perturb; but in full GR we must begin with a notion of
“symmetry” that is not tied to a particular coordinate system.

A. Infinitesimal coordinate transformations and Lie derivatives

In general, a symmetry of any object is a mapping of the object to itself that preserves certain relevant properties (in
our case, the metric). So let’s consider a mapping W(ǫ) : M → M, where ǫ parameterizes the continuous symmetry.
We will force this mapping to be differentiable (with respect to both ǫ and P) as many times as needed, and we will
assume that at zero parameter the mapping is simply the identity:

[W(0)](P) = P . (1)

The prototype of this is the time translation invariance of Minkowski spacetime, where translating by a time ǫ takes
a point (t, xi) to

[W(ǫ)](t, xi) = (t + ǫ, xi). (2)

A continuous symmetry is often described by its behavior for infinitesimal values of the parameter; thus we define
the vector field

ξ(P) =
d

dǫ
[W(0)](P)

∣

∣

∣

∣

ǫ=0

. (3)

In our example of Minkowski space, the contravariant components are simply ξµ = (1, 0, 0, 0).
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Any such mapping can be thought of as a change of coordinates: given the mapping W(ǫ), and an unprimed
coordinate system, we can define the primed coordinates of any point P as the unprimed coordinates of [W(ǫ)](P).
The primed coordinate system depends on ǫ; in our example above, we have

xi′ = xi and t′ = t + ǫ. (4)

Now let’s consider a tensor field Sα1...αM
β1...βN

. In the primed system, it now has components:

Sα′

1
...α′

M
β′

1
...β′

N
(xµ′

) =
∂xα′

1

∂xα1

...
∂xα′

M

∂xαM

∂xβ1

∂xβ′

1

...
∂xβN

∂xβ′

N

Sα1...αM

β1...βN
(xν). (5)

Note that the numerical value of any component here may in general depend on ǫ since the coordinate transformation
depends on ǫ. But if W(ǫ) really describes a symmetry and S is invariant under that transformation, there shouldn’t
be any such dependence. To make use of this fact for infinitesimal symmetries, we take the derivative of Eq. (5) with
respect to ǫ at ǫ = 0:

−
∂

∂ǫ
Sα′

1
...α′

M
β′

1
...β′

N
(xµ′

)

∣

∣

∣

∣

ǫ=0

= −ξα′

1
,γSγα′

2
...α′

M
β′

1
...β′

N
... − ξα′

M
,γSα′

1
...α′

M−1
γ

β′

1
...β′

N

+ξγ
,β1

Sα′

1
...α′

M
γβ′

2
...β′

N
... + ξγ

,βN
Sα′

1
...α′

M
β′

1
...β′

N−1
γ + ξγSα′

1
...α′

M
β′

1
...β′

N
,γ . (6)

Here we have differentiated each term in Eq. (5), and noted that at ǫ = 0 all the Jacobians are Kronecker deltas:

∂xα′

1/∂xα1 = δα′

1α1
, etc. The derivatives are simply

∂

∂ǫ

∂xα′

1

∂xα1

∣

∣

∣

∣

∣

ǫ=0

= ξα′

1
,α1

and
∂

∂ǫ

∂xα1

∂xα′

1

∣

∣

∣

∣

ǫ=0

= −ξα1

,α′

1
. (7)

We have replaced the dummy indices in Eq. (6) with γs. Note that there is no confusion here of comparing tensors
in the primed or unprimed system since at ǫ = 0 they coincide.

The variation in Eq. (6) is so important that it gets a name: we call it the Lie derivative:

LξSα1...αM

β1...βN
= −ξα1

,γSγα2...αM

β1...βN
... − ξαM

,γSα1...αM−1γ
β1...βN

+ξγ
,β1

Sα1...αM

γβ2...βN
... + ξγ

,βN
Sα1...αM

β1...βN−1γ + ξγSα1...αM

β1...βN ,γ . (8)

It describes how the tensor S changes under an infinitesimal coordinate transformation ξ. The rules for computing it
are straightforward – one takes the partial derivative and then appends a correction term for each index – but note
that it contains the derivative of ξ.

The geometry of spacetime is invariant under a continuous symmetry with derivative ξ if and only if the Lie
derivative of the metric is zero,

Lξg = 0. (9)

In this case, we say that ξ is a Killing field.

B. Properties of the Lie derivative

Note that we have made no use of the covariant derivative or metric in defining the Lie derivative. Indeed, the Lie
derivative makes perfect sense on a manifold with no metric structure. But let us suppose that we have a metric.
Since LξS is a tensor, we may evaluate Eq. (8) in a local Lorentz frame, where all Christoffel symbols vanish, and
conclude that

LξS
α1...αM

β1...βN
= −ξα1

;γSγα2...αM

β1...βN
... − ξαM

;γSα1...αM−1γ
β1...βN

+ξγ
;β1

Sα1...αM

γβ2...βN
... + ξγ

;βN
Sα1...αM

β1...βN−1γ + ξγSα1...αM

β1...βN ;γ . (10)

[You can also prove by brute force expansions of Christoffel symbols that this reduces to Eq. (8).]
A consequence is that the Lie derivative of a scalar is simply the directional derivative,

Lξf = ∇ξf. (11)
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The Lie derivative of a vector is often called the commutator:

Luvα = uβvα
,β − vβuα

,β = [u, v]α. (12)

The name arises because of the following easily verified rule:

LuLvSα1...αM

β1...βN
− LvLuSα1...αM

β1...βN
= L[u,v]S

α1...αM

β1...βN
. (13)

Clearly [u, v] = −[v, u].
Finally one can show that the product rule holds:

Lξ(A
α

βBγ
δ) = (LξA

α
β)Bγ

δ + Aα
βLξB

γ
δ, (14)

and that the Lie derivative commutes with contraction.
WARNING: The Lie derivative does not in general commute with the raising and lowering of indices, e.g. LξA

µ

is not the same vector as one obtains by raising the index of LξAµ. Therefore it is necessary to specify whether the
indices are up or down. The exception is when ξ is a Killing field.

III. SYMMETRIES

We may now describe a spacetime as having a continuous symmetry if Eq. (9) holds. This is most often described
by expanding Eq. (10) and noting that gµν;γ = 0; then we have

Lξgµν = ξγ
;µgγν + ξγ

;νgµγ = ξν;µ + ξµ;ν . (15)

Therefore ξ is a Killing field if and only if

ξ(µ;ν) = 0. (16)

It is easy to see that the Killing fields form a vector space – if ξ and η are Killing fields, then aξ + bη is also a Killing
field. This is no surprise: if e.g. t-translation is a symmetry, and x1-translation is a symmetry, then a “diagonal”
translation in both space and time must also be a symmetry. We may therefore obtain a description of all of the
symmetries of a spacetime by finding a basis for the Killing fields and exploring the properties of each of the basis
Killing fields. This is useful because all of the spacetimes we examine in practice have a finite number of linearly
independent Killing fields.

A. Example: Minkowski spacetime

As a first example, let us classify all of the continuous symmetries of Minkowski spacetime. We work in standard
Minkowski coordinates xµ in which the Christoffel symbols vanish. Then the requirement of a Killing field is

ξµ,ν + ξν,µ = 0. (17)

Therefore the tensor fµν = ξµ,ν is antisymmetric. Moreover, we have

fµν,σ = ξµ,νσ = ξµ,σν = fµσ,ν = −fσµ,ν . (18)

Thus fµν,σ flips sign if we cyclically permute the 3 indices. Repeating the above argument 3 times gives

fµν,σ = −fσµ,ν = fνσ,µ = −fµν,σ, (19)

so we conclude that fµν,σ = 0 and fµν is a constant. We can then integrate to find

ξµ = fµνxν + bµ, (20)

where b is any 4-vector. Their components are all affine functions of xµ.
Equation (20) then implies that the Killing fields form a 10-dimensional vector space (4 components of bµ and 6 of

fµν). These can be written in the following basis:

• The 4 translations, which are simply the basis vectors: πα = eα.
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• The 3 rotations, (J1)
µ = (0, 0,−x3, x2), (J2)

µ = (0, x3, 0,−x1), and (J3)
µ = (0,−x2, x1, 0). [Note that the

subscripts on Ji indicate which Killing vector, not which component.]

• The 3 boosts, (K1)
µ = (x1, x0, 0, 0), etc.

These are in fact the familiar transformations of SR between inertial frames. Most of the symmetries we will study
in GR are appropriate generalizations of these. Their designation as a particular type of symmetry will depend on
other mathematical properties (specifically their commutators).

You know from introductory physics that rotations do not commute: an infinitesimal rotation around the 1-axis
followed by an infinitesimal rotation around the 2-axis is not the same as rotating around 2 and then 1. Mathematically,
this is incorporated in the commutator,

[J1, J2] = −J3. (21)

I’ll prove just the 1-component of this equation,

[J1, J2]
1 = (J1)

β(J2)
1
,β − (J2)

β(J1)
1
,β = (J1)

3(J2)
1
,3 = x2(x3),3 = x2. (22)

Generally we have

[Ji, Jj ] = −ǫijkJk. (23)

This relation is probably familiar from quantum mechanics, aside from the factor of i that distinguishes the infinitesi-
mal rotation from the quantum angular momentum operator. It is possible to establish commutation relations of this
sort for all of the Minkowski Killing fields; for example

[Ji, π0] = 0 (24)

and

[Ji, πj ] = −ǫijkπk. (25)

B. Commutation relations

The existence of commutation relations is generic to continuous symmetries (in GR and otherwise). Given any two
Killing vectors ξ and η, it is easily seen that their commutator must be a Killing field, since

L[ξ,η]g = LξLηg − LηLξg = 0 − 0 = 0. (26)

Furthermore, the commutator satisfies a Jacobi identity,

[ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0 (27)

(each combination such as LξLηLζ appears twice with opposite signs). A vector space that satisfies Eq. (27) is said
to be a Lie algebra. Clearly a Lie algebra is defined by the commutators of the basis fields. The familiar angular
momentum operators of quantum mechanics satisfy a Lie algebra, given by Eq. (23) (again with the is located in
different places).

We are now ready to make a definition:

• A spacetime is stationary if it possesses a Killing field π0 that is timelike in some portion of spacetime. (Normally
we will use this term to describe nonrotating stars and black holes; in the latter case, π0 becomes null on
the horizon and is spacelike inside the hole, so we do not want to impose a restriction of π0 being timelike
everywhere.)

• A spacetime is spherically symmetric if it possesses 3 Killing fields J1, J2, and J3 satisfying Eq. (23).

• A spacetime is homogeneous and isotropic if it possesses 3 “rotation” Killing fields Ji and 3 “translation” Killing
fields πi satisfying Eq. (23) and (25).

Normally situations with more Killing fields are easier to analyze since they are more symmetrical. Thus our major
efforts will be devoted to spherical stars (4 Killing fields) and cosmology (6 Killing fields). The most difficult solution
this term is the Kerr black hole (2 Killing fields).
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C. Conservation laws

In ordinary mechanics, we know that a continuous symmetry is associated with a corresponding conservation law.
The same is true in GR. If we take a Killing field ξ, and then trace a freely falling particle of momentum p along its
trajectory, we find

d

dλ
(p · ξ) =

Dp

dλ
· ξ + p · ∇pξ = 0 + pαpβξβ;α = 0. (28)

Therefore p · ξ is conserved along a trajectory.
The examples from Minkowski spacetime are that

• The πα Killing fields tell us that p · πα = p · eα = pα is conserved – thus we have conservation of energy and
3-momentum.

• The Ji Killing fields tell us that e.g. −L1 ≡ p · J1 = −p2x
3 + p3x

2 is conserved – thus we have conservation of

angular momentum.

• The Ki Killing fields tell us that Yi ≡ −p · Ki = −p0x
i + −pix

0 = Exi − pit is conserved – thus the particle’s
position moves at a rate dxi/dt = pi/E.

In less symmetrical spacetimes, subsets of these conservation laws are valid. For example, in stationary and spherically
symmetric spacetimes (such as the exterior of a nonrotating spherical star) we have a conserved energy E = −p · ξ
(where ξ is the time-translation Killing field) and 3 conserved angular momenta Li.

D. Electrodynamics

In the case where there is also an electromagnetic field obeying the symmetry, it is possible to extend the conservation
laws to a charged particle that is not following a geodesic. Specifically, we consider a field tensor Fµν . Since this
field satisfies the Maxwell equation F[µν,σ] = 0, it is possible at least locally to write it as the exterior derivative of a
potential,

Fµν = Aν,µ − Aµ,ν = Aν;µ − Aµ;ν . (29)

Note that A is not unique, as we may always transform Aµ → Aµ + ∂µΛ for any scalar Λ with no effect on Fµν .
If a particle has charge e and accelerates only under the influence of the electromagnetic force, so that Dpα/dλ =

eFαβpβ, then

d

dλ
(p · ξ) = eFαβpβξα + p · ∇pξ = eFαβpβξα. (30)

However

d

dλ
(A · ξ) = Aαpβξα;β + ξαpβAα;β = Aαpβξα

;β + ξαpβAβ;α − ξαpβFαβ = pβLξAβ − ξαpβFαβ . (31)

Therefore if the electromagnetic potential is also symmetrical under the transformation generated by ξ – i.e. if
LξAβ = 0 – then the first term vanishes and we have

d

dλ
[(p + eA) · ξ] = 0 (32)

and so

(p + eA) · ξ = constant. (33)


