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I. OVERVIEW

The previous discussions have taken place in the context of linearized GR, which is not a fully consistent theory.
We will now discuss some aspects of GR in the nonlinear regime, with particular attention to isolated systems. Our
eventual goal is to compute the energy loss of a system emitting gravitational waves. We will outline the concepts
here, and examine the calculation in the next lecture.

The recommended reading for this lecture is:

• MTW §19.3, 20.1–20.3.

II. MASS AND ANGULAR MOMENTUM OF AN ISOLATED SYSTEM

In the previous discussion on linearized, we showed that the metric at large distances from an isolated system in
linearized gravity could be written as

ds2 = −

(

1 − 2
M

R

)

dt2 + 4ǫijk

njSk

R2
dxi dt +

(

1 + 2
M

R

)

[(dx1)2 + (dx2)2 + (dx3)2] + [gravitational wave terms], (1)

where the gravitational wave terms decay as ∼ 1/R.

A. Pseudotensors and Gaussian integrals

Let us consider the object

Hµανβ ≡ −h̄µνηαβ − ηµν h̄αβ + h̄ανηµβ + h̄µβηαν . (2)

As this is a perturbation on a Minkowski background, we will raise and lower indices on Hµανβ with respect to ηµν .
This object satisfies the following symmetry properties:

H(µα)νβ = 0 antisymmetric on first two indices,

Hµα(νβ) = 0 antisymmetric on last two indices,

Hµανβ = Hνβµα symmetric under interchange of first and last two indices, and

Hµ[ανβ] = 0 Jacobi identity. (3)

So far these statements do not depend on linear perturbation theory; they are just definitions. In linear theory,
however, we have

Hµανβ
,αβ = 2Gµν = 16πT µν. (4)

This enables us to write some integrals for the total momentum in a volume V :

Pµ =

∫

V

T µ0 d3x
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=
1

16π

∫

V

Hµα0β
,αβ d3x

=
1

16π

∫

V

Hµα0j
,αj d3x

= −
1

16π

∫

∂V

Hµα0j
,αnj d2x (5)

In particular, the total enclosed energy is

E = P 0 = −
1

16π

∫

∂V

H0i0j
,inj d2x

= −
1

16π

∫

∂V

(−h̄00δij + h̄ij),inj d2x

=
1

16π

∫

∂V

(h̄00
,ini − h̄ij

,inj) d2x. (6)

We may also determine the mass dipole moment:

∆i =

∫

V

xiT 00 d3x

=
1

16π

∫

V

xiH0j0k
,jk d3x

=
1

16π

[
∫

∂V

xiH0j0k
,knj d2x −

∫

V

H0i0k
,k d3x

]

=
1

16π

[
∫

∂V

xiH0j0k
,knj d2x +

∫

∂V

H0i0knk d3x

]

. (7)

We may also consider the enclosed angular momentum:

Si = ǫijk

∫

V

xjT 0k d3x

=
1

16π
ǫijk

∫

V

xjH0αkβ
,αβ d3x

=
1

16π
ǫijk

∫

V

xjH0αkβ
,αβ d3x

=
1

16π
ǫijk

∫

V

xjH0lkβ
,lβ d3x

=
1

16π
ǫijk

[
∫

∂V

xjH0lkβ
,βnl d

2x −

∫

V

H0jkβ
,β d3x

]

. (8)

Now H0jk0 is symmetric in j and k, so in the last integral we may replace H0jkβ
,β → H0jkl

,l. Then:

Si =
1

16π
ǫijk

[
∫

∂V

xjH0lkβ
,βnl d

2x +

∫

∂V

H0jklnl d
2x

]

. (9)

B. Application to asymptotically flat spacetimes

In the limit of an asymptotically flat spacetime, it should be permissible to use the surface integrals, Eqs. (5,6,7,9)
far from the source. It is therefore possible to speak of the mass, momentum, center of mass, and angular momentum

of such a source, even if it contains strong gravitational fields, or even if it is a black hole.
In such situations, it is useful to define the effective stress-energy pseudotensor T eff µν by

T eff µν ≡
1

16π
Hµανβ

,αβ. (10)
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In linearized GR, this is exactly equal to the stress-energy tensor. In full GR, it is not: the difference is called the
gravitational stress-energy psuedotensor tµν :

tµν ≡ T eff µν − T µν . (11)

Note that tµν is not a tensor: under general coordinate transformations, it has no reason to be well-behaved. However,
it does transform in the usual way under global Lorentz transformations of the background.

Warning: Once again, T eff µν and tµν are not tensors. It is not possible to take the energy and angular momentum
of an object with strong gravity and “localize” the part associated with the gravitational field; such a description
cannot be gauge-invariant. However, the overall integrals are gauge-invariant.

The antisymmetry relations imply that

T eff µν
,ν =

1

16π
Hµανβ

,αβν = 0. (12)

This is a sort of conservation law for the effective stress-energy pseudotensor. It is distinct from the law obeyed by
the true stress-energy tensor T µν

;ν = 0.
The point of the stress-energy pseudotensor is that even for sources containing strong gravitational fields, it inte-

grates to the proper momentum, center of mass, and angular momentum. For example, the relation

Pµ =

∫

V

T eff µ0 d3x (13)

where Pµ is defined for a self-gravitating object by Eq. (5) remains valid even for a neutron star. The conservation
law, Eq. (12) then implies the usual relations:

• For an isolated system with no emerging gravitational radiation, Pµ is conserved.

• For an isolated system with no emerging gravitational radiation, the rate of change of the mass dipole moment
∆̇i = P i.

• For an isolated system with no emerging gravitational radiation, Si is conserved.

By “no emerging gravitational radiation” we mean to set tµν to be negligible at large distances (see below).
We haven’t proven these rules for a black hole or other system with “weird” topology (such that you can’t actually

do an integral of T eff through the center of the object). Nevertheless the integral definitions combined with the
equivalent conservation rule Hµανβ

,αβν are sufficient to prove this. (Homework exercise!)
For a system emitting gravitational radiation, the situation is more complex. The Einstein tensor is now given not

by 1
2Hµανβ

,αβ, but by higher-order terms as well:

Gµν =
1

2
Hµανβ

,αβ −
1

8π
tµν , (14)

where tµν contains all terms 2nd order and higher in h̄µν . The amplitude of emitted gravitational waves is ∝ 1/R
and hence the gravitational stress-energy psuedotensor, being a second-order object, is ∝ 1/R2. This is important
because if we write the time derivative of e.g. the system’s energy, and assume no matter is emitted (T µν = 0 on the
boundary of the region considered)

Ė =

∫

V

Ṫ eff 00 d3x = −

∫

V

T eff 0ini d3x = −

∫

∂V

T eff 0ini d2x = −

∫

∂V

t0ini d2x. (15)

For the case of emerging gravitational radiation, the latter integral approaches a constant as we take the surrounding
surface to ∞. Therefore a system can change its total energy through the emission of such waves. Similar rules tell
us that it can emit angular momentum.

In order to understand the quantitative implications of all this, we need to develop the formula for tµν , and determine
the “effective” energy carried by gravitational waves. The computation of tµν to second order will be our next order
of business.


