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I. OVERVIEW

Having examined weak field gravity and the associated experimental tests, we now turn our attention to the
external field produced by a system (e.g. a star or the solar system) in linearized gravity. This will include both the
gravitational analogues of electric and magnetic multipole moments, as well as gravitational waves.

The discussion in the beginning part of this lecture makes sense only for weak perturbations around Minkowski
spacetime. Later we will generalize the concepts to make sense in asymptotically flat spacetime – i.e. spacetime that
looks like Minkowski far from the system, but may have strongly curved regions inside of it (e.g. a black hole).

The recommended reading for this lecture is:

• MTW §19.1–19.2.

II. GREEN’S FUNCTION SOLUTION FOR THE METRIC PERTURBATION

We found that in Lorentz gauge the trace-reversed metric perturbation is given via the relation

�h̄µν = −16πTµν. (1)

We would like to formally solve this equation using a Green’s function approach. That is, we wish to construct the
Green’s function G(xα) such that

�G(xα) = δ(4)(xα), (2)

and then by the principle of superposition we may write the metric perturbation as an integral over the Green’s
function:

h̄µν(xα) = −16π

∫

G(xα − yα)Tµν(yα) d4y. (3)

How are we to find G? There is unfortunately no unique answer! After all, we could add any function f with
�f = 0 to G and it would still satisfy Eq. (2). However, in most situations there is a physical choice: we want the
retarded Green’s function Gret, which is zero for x0 = t < 0. This corresponds to the solution in which there is no
incoming gravitational radiation. The use of the retarded Green’s function is however not a necessity but a particular
solution to Einstein’s equations.

The easiest method to obtain the retarded Green’s function is to take the Fourier transform of Eq. (2) over all four
dimensions. Defining

G̃(kα) =

∫

G(xα) e−ikαxα

d4x, (4)

we find that the Fourier transform of Eq. (2) is

∫

[�G(xα)] e−ikαxα

d4x =

∫

δ(4)(xα) e−ikαxα

d4x. (5)
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Since � = ∂µ∂µ, we may use double integration by parts on the left-hand side to move the � onto the complex
exponential. On the right-hand side, the integral is simply 1:

∫

G(xα)�e−ikαxα

d4x = 1. (6)

The box acting on the complex exponential brings down a factor of −kµkµ, so

−kµkµG̃ret(kα) = 1, (7)

or

G̃(kα) = −
1

kµkµ
=

1

(k0)2 − k2
sp

, (8)

where the “sp” subscript denotes the spacelike part.
As usual with Fourier transforms, we may recover the original function by writing

G(xα) = (2π)−4

∫

G̃(kα)eikαxα

d4k. (9)

There’s a big problem with this integral as it stands, which is that the integrand diverges when kµkµ = 0. The
resolution to this problem is to appeal to the retarded condition: since G(xα) = 0 for t < 0, it follows that the integral
in Eq. (4) is well-behaved if we add a small negative imaginary part to k0, since taking k0 → k0 − iǫ introduces a
factor of e−ǫt into the integrand. If we make this choice – which essentially determines the “retarded” nature of the
Green’s function – we find

Gret(x
α) = (2π)−4

∫

1

(k0 − iǫ)2 − k2
sp

eiksp·xspeik0t d4k. (10)

The k0 part of the integral is solvable by contour integration. In particular, we define the integral

I(ksp, t) =

∫

∞

−∞

1

(k0 − iǫ)2 − k2
sp

eik0t dk0. (11)

The integrand is analytic except for poles at k0 = ±ksp + iǫ. If t < 0, then the integrand goes to zero in the lower
half complex plane, and we may close the contour and find an integral of zero. If t > 0, then the integrand goes to
zero in the upper half complex plane:

I(ksp, t) = 2πi

[

e−ikspt

−2ksp
+

eikspt

2ksp

]

= −2π
sinkspt

ksp
. (12)

It then follows that:

Gret(x
α) = −(2π)−3Θ(t)

∫

sinkspt

ksp
eiksp·xsp d3ksp, (13)

where Θ is the step function. We may further simplify the integral by choosing a coordinate system where the 3-axis
is along xsp, and define spherical coordinates for the wave vector ksp: (ksp, µ = cos θ, φ). The integral then becomes

Gret(x
α) = −(2π)−3Θ(t)

∫

sin kspt

ksp
eikspxspµ k2

sp dksp dµ dφ. (14)

The φ integral simply evaluates to 2π, and the µ integral is trivial:

∫ 1

−1

eikspxspµ dµ = 2
sinkspxsp

kspxsp
. (15)

Thus:

Gret(x
α) =

1

2π2xsp
Θ(t)

∫

∞

0

sin(kspt) sin(kspxsp) dksp. (16)
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If we use product-to-sum identities:

Gret(x
α) = −

1

4π2xsp
Θ(t)

∫

∞

0

{cos[ksp(t − xsp)] − cos[ksp(t + xsp)]} dksp. (17)

If t ≈ xsp then this is ill-behaved. We need to use the following form of the δ-function:

∫

∞

0

cos ku dk = πδ(u). (18)

Then

Gret(x
α) = −

1

4πxsp
Θ(t)δ(t − xsp). (19)

This is the form of the retarded Green’s function that we will use.
The retarded solution for the metric is then

�h̄ret
µν (xsp, t) = 4

∫

1

r
Tµν(ysp, t − r)d3ysp, (20)

where r ≡ |xsp − ysp|.
Remember that the retarded solution is only one possible solution for the metric for a given matter source. But

the difference between the true solution and the retarded solution can be found by noting that if both are soutions of
�h̄µν = −16πTµν for the same source, then

�(h̄µν − h̄ret
µν ) = 0. (21)

Therefore, we may write

h̄µν = h̄ret
µν + h̄homo

µν , (22)

where h̄homo
µν is a homogeneous or gravitational wave solution (solution for zero matter source). We will see that

Eq. (20) contains gravitational waves, but they are only outgoing (as one can see from the t − r time argument).
Therefore setting h̄homo

µν to zero is equivalent to saying that no external gravitational waves are incident on a system.
Usually this is a good approximation!

[Warning: The outgoing gravitational waves in the above formulation are not necessarily in transverse-traceless
gauge.]

III. MULTIPOLE EXPANSION

Far from a source, it is common to do a multipole expansion: essentially a power-series expansion of Eq. (20) in
powers of ysp. This can be done for both relativistic and nonrelativistic sources, but we will focus on nonrelativistic
sources (e.g. binary stars) here. We will also examine only the lowest-order multipoles since these (i) correspond
to conserved quantities and (ii) the next-lowest terms carry the dominant source of gravitational radiation from a
nonrelativistic object.

A. The trace-reversed perturbation

We begin by expanding 1/r as a power series in y:

1

r
= [(xi − yi)(xi − yi)]

−1/2

= [xixi − 2xiyi + yiyi]
−1/2

= (xixi)
−1/2 −

1

2
(xixi)

−3/2(−2xiyi + yiyi) +
3

8
(xixi)

−5/2(2xiyi)
2 + ...

=
1

|xsp|
−

xiyi

|xsp|3
+

xixj(3yiyj − ykykδij)

2|xsp|5
+ ..., (23)
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with a fractional error of order (L/xsp)3, where L is the typical size scale of the source.
We may also Taylor-expand Tµν :

Tµν(ysp, t − r) = Tµν(ysp, t − |xsp|) +
xiyi

|xsp|
Tµν,0(ysp, t − |xsp|) +

xixjyiyj

2|xsp|2
Tµν,00(ysp, t − |xsp|)..., (24)

with a fractional error of order L3/t3 = V 3 or L2/xspt = V L/xsp, where V is the typical velocity scale of the source.
It then follows that the retarded solution for the metric perturbation is

h̄µν(xsp, t) = 4

∫
[

1

R
−

xiyi

R3
+

xixj(3yiyj − ykykδij)

2R5
...

]

×

[

Tµν(ysp, t − R) +
xiyi

R
Ṫµν(ysp, t − R) +

xixjyiyj

2|xsp|2
Tµν,00(ysp, t − |xsp|)

]

d3ysp, (25)

where we define R = |xsp|. The lowest-order fractional errors are V 2, V L/R, and 1/R3.
It is useful to consider the behavior of each metric component at large distances from the source. We first see that

1

4
h̄00(xsp, t) =

1

R

∫

ρ d3ysp −
xi

R3

∫

yiρ d3ysp +
xi

R2

∫

yiρ̇ d3ysp +
3xixj

2R5

∫

(yiyj −
1

3
ykykδij)ρ d3ysp

+
xixj

2R2

∫

yiyj ρ̈ d3ysp + ...

∣

∣

∣

∣

ret

, (26)

where the |ret on the right-hand side indicates evaluation at the retarded time t − R.
Now the first integral is simply the (conserved) mass M of the system. (Technically this is the energy, but the

difference only arises at the next order in velocity, which we have dropped.) The second integral is the mass dipole
moment,

MYi =

∫

yiρ d3ysp, (27)

where Yi is the center of mass. Finally, defining the momentum density Fj = T 0
j and noting that Fj,j = −ρ̇ the third

integral is

MẎi =

∫

yiρ̇ d3ysp = −

∫

yiFj,j d3ysp =

∫

yi,jFj d3ysp =

∫

Fi d3ysp = Pi, (28)

where Pi is the total momentum. Under normal circumstances, we will work in the center of mass frame, in which Yi

and Pi are zero. Finally, we define the mass quadrupole moment of the system to be

Qij =

∫

(yiyj −
1

3
ykykδij)ρ d3ysp = Iij −

1

3
Ikkδij . (29)

(Here Iij is the moment of inertia tensor.) Then Eq. (25) reduces to

h̄00(x) = 4
M

R
+ 6

Qijxixj

R5
+ 2

xixj

R3
Ïij ...

∣

∣

∣

∣

ret

. (30)

This is simply the standard quadrupolar formula familiar from Newtonian physics. But note that in fully nonlinear
general relativity, the leading correction to the M/R formula is not the quadrupole term (∝ R−3) but rather the
nonlinearity of the theory (∝ M2/R2 – this is the term that is necessary to obtain the perihelion precession of
Mercury). In some cases, such as the orbit of Mercury around the Sun, the relativistic M2/R2 term dominates over
the quadrupole effect, but for a satellite orbiting the Earth (with its much more flattened shape) the opposite is true.

We may further write down the linearized formula for h̄0i, including terms through second order in V :

h̄0i(x) =
4

R

∫

Fi(ysp) d3ysp − 4
xj

R3

∫

yjFi(ysp) d3ysp + 4
xj

R2

∫

yjḞi d3ysp + ...

∣

∣

∣

∣

ret

; (31)

the first integral is Pi and hence vanishes. The second integral may be simplified using the rule that the angular
momentum is

Sk = −ǫijk

∫

yjFi(ysp) d3ysp (32)
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so that

ǫklmSk = −ǫklmǫijk

∫

yjFi(ysp) d3ysp = −(δliδmj − δljδmi)

∫

yjFi(ysp) d3ysp = −2

∫

y[mFl](ysp) d3ysp. (33)

Furthermore,

İij =

∫

yiyj ρ̇ d3ysp = −

∫

yiyjFk,k d3ysp =

∫

(yi,kyjFk + yj,kyiFk) d3ysp = 2

∫

y(jFi) d3ysp. (34)

Therefore, decomposing the integral in h̄0i into its symmetric and antisymmetric parts:

−4
xj

R3

∫

yjFi(ysp) d3ysp = −4
xj

R3

[
∫

y[jFi](ysp) d3ysp +

∫

y(jFi)(ysp) d3ysp

]

= 2ǫijkSk
xj

R3
+ 2İij

xj

R3
. (35)

Substituting in this, and its time derivative, gives

h̄0i(x) = 2ǫijkSk
xj

R3
+ 2İij

xj

R3
− 2ǫijkṠk

xj

R2
− 2Ïij

xj

R2
+ ...

∣

∣

∣

ret
. (36)

Using conservation of angular momentum, we drop the Ṡk term, leaving

h̄0i(x) = 2ǫijkSk
xj

R3
+ 2İij

xj

R2
− 2Ïij

xj

R2
+ ...

∣

∣

∣

ret
. (37)

Finally, in the case of the space-space components we will write only the lowest term,

h̄ij(x) =
4

R

∫

Tij d3ysp

∣

∣

∣

∣

ret

. (38)

This can be simplified by noting that from Eq. (34):

Ïij = 2

∫

y(jḞi) d3ysp = −2

∫

y(jTi)k,k d3ysp = 2

∫

T(iyj),k d3ysp = 2

∫

Tij d3ysp. (39)

Then:

h̄ij(x) =
2

R
Ïij + ...

∣

∣

∣

∣

ret

. (40)

The far-field metric perturbation from a source according to the above equations can be found by reversing the
trace of h̄. Letting ni = xi/R, this is:

h̄ = −4
M

R
+

2

R
Ïkk −

2

R
ninj Ïij + 6

Qijninj

R3
+ ...

∣

∣

∣

∣

ret

. (41)

Including this with trace reversal gives

h00 = 2
M

R
+

1

R
Ïkk +

1

R
ninj Ïij + 3

Qijninj

R3
+ ...

∣

∣

∣

∣

ret

h0i = 2ǫijkSk
nj

R2
+ 2İij

nj

R2
− 2

nj

R
Ïij + ...

∣

∣

∣

ret
and

hij = 2
M

R
δij +

2

R
Ïij −

1

R
Ïkkδij +

1

R
nknlÏklδij − 3

Qijninj

R3
+ ...

∣

∣

∣

∣

ret

. (42)

This looks at first glance to have several pieces: there is the familiar Newtonian potential; there is a piece associated
with the angular momentum in the time-space part (gravitomagnetism); and there is a set of outward-propagating
waves (gravitational waves!) associated with time variation of the quadrupole moment.
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B. The radiation terms

You will note that the gravitational waves (İij terms) in the far field do not look like the ones we studied: in
particular they have time-space and time-time components and are not orthogonal to ni (the outward direction). At
large distances from the source, the leading-order (1/R) wave terms are

hGW
00 =

1

R
Ïkk +

1

R
ninj Ïij ,

hGW
0i = −2

nj

R
Ïij , and

hGW
ij =

2

R
Ïij −

1

R
Ïkkδij +

1

R
nknlÏklδij (43)

(all retarded). Fortunately, a gauge transformation can be used to eliminate most of these terms. Recall that under
a change of coordinates ξµ, the metric tensor changed by ∆hµν = −ξµ,ν − ξν,µ. We first perform a change of the time
coordinate t,

ξ0 =
1

2R
İkk +

1

2R
ninj İij , (44)

leaving the spatial coordinates fixed (ξi = 0). Then the time-time component changes by

∆h00 = −2ξ̇0 = −
1

R
Ïkk −

1

R
ninj Ïij . (45)

To find the correction ∆h0i = −ξ0,i, we recall that since İij is evaluated at the retarded time, its spatial derivative
contains a time derivative:

∂iIkl = İkl∂i(t − R) = −İkl∂iR = −İklni. (46)

Thus:

∆h0i =
1

2R
niÏkk +

1

2R
ninjnk Ïjk. (47)

After applying this transformation, the outgoing wave is

hGW
00 = 0,

hGW
0i =

1

2R
niÏkk +

1

2R
ninjnkÏjk − 2

nj

R
Ïij , and

hGW
ij =

2

R
Ïij −

1

R
Ïkkδij +

1

R
nknlÏklδij (48)

(again retarded).

Finally, we may introduce a gauge transformation in the spatial coordinates to eliminate hGW
0i . We want ∆h0i = −ξ̇i

to cancel hGW
0i , so we choose ξi to be the time-integral of hGW

0i :

ξi =
1

2R
niİkk +

1

2R
ninjnk İjk − 2

nj

R
İij . (49)

Now we find that the change to the purely spatial metric is

∆hij = −ξi,j − ξj,i

= nj ξ̇i + niξ̇j

=
1

R
ninj Ïkk +

1

R
ninjnknlÏkl −

2

R
njnk Ïik −

2

R
nink Ïjk. (50)

The overall amplitude of the outgoing gravitational wave is then

hGW
00 = 0,

hGW
0i = 0, and

hGW
ij =

1

R

(

2Ïij − Ïkkδij + nknlÏklδij + ninj Ïkk + ninjnknlÏkl − 2njnk Ïik − 2nink Ïjk

)

(51)
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(all retarded, as usual). This is the usual form for the amplitude of emitted gravitational waves.
It is straightforward to check that Eq. (51) corresponds to a transverse-traceless tensor. To see that it is transverse,

note that

hGW
ij ni =

1

R

(

2Ïijni − Ïkknj + ninknlÏkl + nj Ïkk + njnknlÏkl − 2njnkniÏik − 2nk Ïjk

)

= 0. (52)

To see that it is traceless, take

hGW
ii =

1

R

(

2Ïii − 3Ïkk + 3nknlÏkl + Ïkk + nknlÏkl − 2nink Ïik − 2nink Ïik

)

= 0. (53)

C. The non-radiation terms

In addition to gravitational radiation, the metric can contain the non-radiation terms, the leading ones of which
are associated with the mass M and angular momentum (3)S:

ds2 = −

(

1 − 2
M

R

)

dt2 + 4ǫijknj
Sk

R2
dt dxi +

(

1 + 2
M

R

)

[(dx1)2 + (dx2)2 + (dx3)2] + ... (54)

The “mass” terms M we have already discussed extensively: indeed, the mass M of a system is measurable using
ordinary Newtonian dynamics, e.g. using Kepler’s 3rd law.

The “angular momentum” terms (3)S are a bit trickier: they lead to gravitomagnetism. They can be measured by
their effect on moving objects, for example:

• The precession of the orbit of a satellite (as found on Homework #5).

• The precession of a gyroscope (the magnetic part of the Weyl tensor).

As an example of the latter, let’s consider a point on the +3 axis (x1 = x2 = 0, x3 > 0) and find the radial-radial
component of the magnetic part of the Weyl tensor:

B3̂3̂ = C3̂0̂1̂2̂ = C3012 = R3012 (55)

to first order (the last equality holds in vacuum). Then (using Exercise 18.1 of MTW)

B3̂3̂ =
1

2
(h32,10 + h10,32 − h02,31 − h31,02) =

1

2
(h10,32 − h02,31). (56)

But on the 3-axis:

h10,32 = 2
(

S3
n2

R2
− S2

n3

R2

)

,23
= 2S3

( n2

R2

)

,23
= 2S3(R

−3),3 = −6
S3

R4
, (57)

and similarly for the other term. We thus find

B3̂3̂ = −6
S3

R4
. (58)

Recall from HW#4 that the magnetic part of the Weyl tensor describes the relative precession of two sets of gyroscopes.
Therefore, if we drop a spacecraft down toward an object, the gyroscopes in its nose and in its tail precess relative
to each other at a rate given by the angular momentum of the object. The component of precession around the axis
pointing in toward the object is determined by that component of the object’s angular momentum!

This is the origin of frame dragging – the effect in which a massive rotating object causes inertial frames near it
to precess relative to those farther away. It has many manifestations of which the gyroscope example above is the
simplest.


