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I. OVERVIEW

We are now ready to consider the solutions of GR for the case of weak gravitational fields. This encompasses
Newtonian gravity, as well as a few extensions thereof. In addition to its importance in e.g. the solar system, our
study of linearized gravity will prepare us for the discussion of some of the weak-field experimental tests of GR
(Lecture XI). It will also illustrate some of the issues that arise in solving the field equations.

The recommended reading for this lecture is:

• MTW Ch. 18.

II. LINEARIZATION OF EINSTEIN’S EQUATIONS

[Reading: MTW §18.1]
Linearized gravity is simply perturbation theory around Minkowski spacetime. That is, we assume that the metric

tensor is given by

gµν = ηµν + hµν , (1)

where |hµν | ≪ 1 is a small perturbation. We will endeavor to construct the Einstein tensor to linear order in hµν and
then use it to construct the linearized equation relating the metric perturbations to the stress-energy tensor.

For the purposes of linearized gravity analyses, we will raise and lower the indices on hµν according to η:

hµ
ν ≡ ηµαhαν and hµν ≡ ηµαηνβhαβ . (2)

In linear perturbation theory this doesn’t matter, since if we had chosen instead to use the full metric gµα the
corrections would be second order. However it is standard practice in higher-order perturbation theory in GR to raise
and lower indices of the metric perturbation according to the background – i.e. to think of the metric perturbation
is a tensor field propagating on the background spacetime.

A. The Christoffel symbols and curvature tensors

It is straightforward to compute the Christoffel symbols in the linearized metric. They are

Γµ
αβ =

1

2
gµν(−hαβ,ν + hαν,β + hβν,α) =

1

2
(−hαβ

,µ + hµ
α,β + hµ

β,α), (3)

where in the second equality we used linearization. Note also that to linear order the covariant derivative of a metric
perturbation can be transformed into a partial derivative.

One may then proceed to compute the Ricci tensor,

Rµν = Γα
µν,α − Γα

µα,ν − Γβ
µαΓα

βν + Γβ
µνΓα

βα; (4)
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to linear order the “ΓΓ” terms go away and we are left with

Rµν = Γα
µν,α − Γα

µα,ν

=
1

2
(−hµν,α

α + hµ
α

,να + hν
α

,µα + hµα
,α

ν − hα
µ,αν − hα

α,µν)

=
1

2
(−hµν,α

α + hν
α

,µα + hµα
,α

ν − hα
α,µν). (5)

It’s convenient to simplify this with the notations

h ≡ hα
α and � = ∂α∂α = −∂2

t + ∇2 (6)

(the � operator is called the d’Alembertian and is the 4D generalization of the Laplacian). Then

Rµν =
1

2
(−�hµν + hν

α
,µα + hµα

,α
ν − h,µν). (7)

The Ricci scalar is the trace of this,

R = Rµ
µ =

1

2
(−�h + hµα

,µα + hµα
,µα − �h) = hµα

,µα − �h. (8)

Finally, the Einstein tensor is to linear order

Gµν = Rµν −
1

2
Rηµν =

1

2
(−�hµν + hν

α
,µα + hµα

,α
ν − h,µν − hαβ

,αβηµν + ηµν�h). (9)

We thus arrive at the equation of linearized gravity:

−�hµν + hν
α

,µα + hµα
,α

ν − h,µν − hαβ
,αβηµν + ηµν�h = 16πTµν . (10)

B. Trace-reversed perturbation variable

Equation (10) is quite complicated. It is usually preferred to write the metric perturbation using the trace-reversed

perturbation variable, defined by

h̄µν = hµν −
1

2
hηµν ↔ hµν = h̄µν −

1

2
h̄ηµν . (11)

The normal metric perturbation hµν and the trace-reversed perturbation h̄µν contain exactly the same information.
(Note that we have used h̄ = h̄α

α = −h, and assumed n = 4 dimensions.) Substituting into Eq. (10) gives

−�h̄µν +
1

2
ηµν�h̄ + h̄ν

α
,µα −

1

2
h̄,µν + h̄µα

,α
ν −

1

2
h̄,µν + h̄,µν − h̄αβ

,αβηµν +
1

2
ηµν�h̄ − ηµν�h̄ = 16πTµν. (12)

This simplifies to an equation with only 4 instead of 6 terms on the left-hand side:

−�h̄µν + h̄ν
α

,µα + h̄µα
,α

ν − h̄αβ
,αβηµν = 16πTµν. (13)

C. Gauge ambiguities

We now have, in the limit of weak gravity, a system of 10 linear PDEs for 10 variables h̄µν in terms of the sources
(the stress-energy tensor). It is thus tempting to try to solve for h̄µν . This is, unfortunately, not possible because we
have not chosen a coordinate system. Indeed, small deviations from gµν = ηµν may arise either because spacetime is
perturbed from Minkowski, or because we perturbed the coordinate system (or both). So we must understand the
implications of perturbing the coordinate system, or making a small gauge transformation.

To begin with, let’s imagine two coordinate systems xµ and xµ′

, deviating from each other by a very small amount
ξµ:

xµ = xµ′

− ξµ, (14)
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Then to first order in ξ the metric in the two systems is related by

gµ′ν′(x′) =
∂xα

∂xµ′

∂xβ

∂xν′
gαβ(x)

= (δα
µ′ − ξα

,µ′)(δβ
ν′ − ξβ

,ν′)[gαβ(x′) − gαβ,σ(x′)ξσ]

= gµν(x) − ξα
,µgαν − ξβ

,νgµβ − gµν,σξσ. (15)

This is for a general infinitesimal change of coordinates. In the special case of Minkowski spacetime, we can neglect
the last term (it is second order in perturbation theory) and we have

gµ′ν′(x′) − gµν(x) = −ξν,µ − ξµ,ν . (16)

Thus an infinitesimal change of coordinates in which the “grid” is displaced by the vector ξ changes the metric
perturbation according to

∆hµν = −ξν,µ − ξµ,ν (17)

or

∆h̄µν = −ξν,µ − ξµ,ν + ξα
,αηµν . (18)

In solving Einstein’s equations it is common practice to impose gauge conditions: one adds new conditions on the
metric tensor until the coordinate system is uniquely fixed. In doing so, one must prove that the gauge condition can
be satisfied by some appropriate choice of ξ. After 4 gauge conditions are imposed (the number of degrees of freedom
in choosing the coordinate system), the metric is determined.

D. Lorentz gauge

The gauge in which linearized gravity is simplest is the Lorentz gauge, described by the choice

h̄µα
,α = 0. (19)

Before we use Lorentz gauge we must prove that it exists, i.e. that we can always find a ξ that turns an arbitrary
perturbed Minkowski space into one satisfying Eq. (19). To do so, we recall that a gauge transformation leads to a
new trace-reversed perturbation,

h̄′

µν = h̄µν − ξν,µ − ξµ,ν + ξα
,αηµν . (20)

Taking the divergence gives

h̄′µα
,α = h̄µα

,α − ξα,µ
α − ξµ,α

α + ξβ
,βαηµα = h̄µα

,α − �ξµ. (21)

Therefore the transformed system is in Lorentz gauge if we can choose �ξµ = h̄µα
,α. Fortunately, for any function

f there is always a function F such that �F = f . Thus there is always a choice of gauge satisfying the Lorentz
condition, Eq. (19). In fact there are many such functions, so the Lorentz gauge is not uniquely determined. We will
come back to this issue later.

In Lorentz gauge, the linearized Einstein equation Eq. (13) becomes simply

�h̄µν = −16πTµν. (22)

III. GRAVITATIONAL FIELD OF NONRELATIVISTIC MATTER

As a first application of linearized gravity, let’s consider the gravitational field of an isolated distribution of masses in
the Newtonian limit. That is, we assume that (i) the stress-energy tensor is dominated by the density, Tµν = ρδµ0δν0;
(ii) the matter moves slowly enough that we can neglect time derivatives in the equations; and (iii) the spacetime is
“asymptotically flat,” i.e. at large distances approaches the behavior of Minkowski spacetime. Then Eq. (22) says
that

∇2h̄00 = −16πρ, (23)
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with all other components of h̄µν equal to zero. Let us define the Newtonian potential Φ by the equation

∇2Φ = 4πρ, (24)

subject to the usual boundary condition that Φ → 0 at infinite distance. Then we have

h̄00 = −4Φ. (25)

We may solve for the entire metric perturbation by noting that h̄ = −h̄00 = 4Φ and hence

hµν = h̄µν −
1

2
h̄ηµν =







−2Φ µ = ν = 0
−2Φ µ = ν 6= 0

0 otherwise
. (26)

Thus the line element is

ds2 = −(1 + 2Φ)dt2 + (1 − 2Φ)[(dx1)2 + (dx2)2 + (dx3)2]. (27)

This is our first “solution” (albeit only in perturbation theory) of Einstein’s equation!
A case of particular interest is the field generated by a compact massive body of mass M . The Newtonian potential

is now Φ = −M/r, where r =
√

(dx1)2 + (dx2)2 + (dx3)2. The line element is

ds2 = −

(

1 −
2M

r

)

dt2 +

(

1 +
2M

r

)

[(dx1)2 + (dx2)2 + (dx3)2]. (28)

This is, to first order in M , the description of the spacetime around the Sun. We will use it in the next lecture to
discuss the gravitational deflection of light and the Shapiro time delay.

IV. GRAVITATIONAL WAVES

[Reading: MTW §18.2]
Let us now leave the realm of nearly static spacetimes and explore the full dynamics of linearized gravity. We will

start by investigating the vacuum solutions of Einstein’s equations, and discover that they allow wave motions to
propagate in the structure of spacetime. In later lectures we will investigate the generation of gravitational waves by
matter.

In vacuum, the Lorentz gauge equations become �h̄µν = 0. This is a system of 10 simple scalar wave equations,
and we can search for solutions of the form

h̄µν = ℜ
(

Aµνeikαxα
)

= ℜ
(

Aµνeikix
i

e−iωt
)

, (29)

where kµ is the wave vector and ω = k0 = −k0. The d’Alembertian acting on a complex exponential is

� = ∂α∂α = (ikα)(ikα) = −kαkα, (30)

so we have a solution if k is a null vector, i.e. kαkα = 0 or

ω = ±
√

(k1)2 + (k2)2 + (k3)2. (31)

From the dispersion relation we can see that all perturbations will have both phase and group velocities equal to
the speed of light.

It looks at first glance like there are 10 polarizations of gravitational wave since there are 10 scalar wave equations.
However, this is not the case. The Lorentz gauge condition h̄µα

,α = 0 tells us that

Aµαkα = 0. (32)

This restriction eliminates 4 of the degrees of freedom, so there are only 6 legal degrees of freedom in Aµν . Moreover,
there is a residual gauge freedom in the Lorentz gauge. If we introduce a gauge transformation ξ given by

ξµ = ℜ
(

iBµeikαxα
)

, (33)
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then since �ξµ = 0 the Lorentz gauge condition is preserved. It follows that the metric perturbation changes by

h̄µν → h̄µν − ξν,µ − ξµ,ν + ξα
,αηµν (34)

and the gravitational wave amplitude changes by

Aµν → Aµν + kµBν + kνBµ − kαBαηµν . (35)

We may choose the 4 components of Bµ however we want. It is most convenient to look at the 4 quantities:







1
2
Aα

α

A01

A02

A03






→







1
2
Aα

α

A01

A02

A03






+







−ω −k1 −k2 −k3

k1 −ω 0 0
k2 0 −ω 0
k3 0 0 −ω













B0

B1

B2

B3






. (36)

Since the 4 × 4 matrix shown is invertible, one can always choose the coordinate system so that

Aα
α = 0 and A0i = 0. (37)

This choice, combined with Eq. (32), is called transverse-traceless gauge for reasons that will become clear shortly.
This implies a total of 8 conditions on Aµν so there are 2 remaining polarizations of gravitational waves. Also

the inversion completely fixes the gauge (i.e. it specifies Bµ) so these waves are “real” in the sense that a gauge
transformation cannot eliminate them.

What is the nature of these two polarizations? We may find out by expanding Eq. (32), the µ = 0 component of
which gives

−ωA00 + kiA
0i = 0. (38)

Then Eq. (37) tells us that for ω 6= 0 we have A00 = 0 and hence from Eq. (37) Aii = Aα
α + A00 = 0. Moreover, the

spatial components of Eq. (32) give

Aijkj = 0. (39)

Thus we see that Aµν is (i) purely spatial (00 and 0i components vanish); (ii) traceless, Aii = 0; and (iii) transverse,
Aijkj = 0.

An explicit construction is possible if we consider a wave propagating in the 3-direction. Then the restrictions on
A give

A =







0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0






. (40)

We note that under gauge transformations, Eq. (35), the quantities Ag
+ = 1

2
(A11 −A22) and Ag

×
= A12 do not change,

so one may use these as a way to compute the amplitudes of an arbitrary gravitational wave. The metric associated
with a gravitational wave propagating in the 3-direction is

ds2 = −dt2 + [1 + ℜ(A+eikαxα

)](dx1)2 + 2ℜ(A×eikαxα

) dx1dx2 + [1 −ℜ(A+eikαxα

)](dx2)2 + (dx3)2. (41)

What is the physical interpretation of this wave? Let us first consider a linearly polarized wave with + polarization,
and consider a suite of test particles at constant spatial coordinates (x1, x2, x3). [Exercise: prove that these particles
are freely falling.] As the wave passes by, the particles separated in the 1-direction see each other move closer together
and farther apart. The particles separated in the 2-direction see the same thing, except that the stretching and
squeezing in the 2-direction is 180◦ out of phase with the 1-direction. The distance element in the 3-direction (the
direction of propagation) is unaffected by the passage of the gravitational wave.

A × polarized wave yields the same phenomenon, except that the stretching and squeezing occurs along the axes
(2−1/2, 2−1/2, 0) and (−2−1/2, 2−1/2, 0). Once again, the distance element in the 3-direction is unaffected. This is the
reason for the designations of “+” and “×” polarization rather than “horizontal” and “vertical” as for light.

Just as for electromagnetic radiation, circularly polarized gravitational waves may be generated by superposing
linearly polarized waves of equal amplitude with a 90◦ phase shift. For example,

ds2 = −dt2 + [1 + AR cos(kx3 −ωt)](dx1)2 + 2AR sin(kx3 −ωt) dx1dx2 + [1−AR cos(kx3 −ωt)](dx2)2 + (dx3)2. (42)

The axis of stretching of this wave rotates through 180◦ every wave period. It thus has a pattern speed of 1
2
ω. In the

most general case, gravitational waves can be elliptically polarized.
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V. CONSERVATION OF ENERGY AND MOMENTUM IN LINEARIZED GRAVITY

[Reading: MTW §18.3]
We finally return to our starting point in developing Einstein’s equations: the conservation law for energy-

momentum. The Lorentz gauge condition and the field equation tell us that

T µν
,ν = −

1

16π
�hµν

,ν = 0. (43)

This is of course the lowest approximation to the true conservation law T µν
;ν = 0. However it is paradoxical: it says,

for example, that energy and momentum are locally conserved. Thus if one puts a mass in the Earth’s gravitational
field, Eq. (43) tells us that its momentum is conserved, i.e. that

P i =

∫

object

T 0i d3x (44)

has a time derivative given by boundary terms:

Ṗ i =

∫

object

T 0i
,0 d3x = −

∫

object

T ji
,j d3x = −

∮

boundary

T jinj d2x = 0 (45)

if the region outside the object is vacuum. So if started at rest it does not fall! This apparent contradiction is resolved
only in the full nonlinear theory of Einstein gravity, in which the conservation law is T µν

;ν = 0.


